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Outhline

Sequence modelling: review and miscellaneous notes
Hidden Markov models: shortcomings

Generative vs. discriminative models

Linear-chain CRFs

* Inference and learning algorithms with linear-chain CRFs



Hidden Markov Model

Graph specifies how join probability decomposes

T—1 T
P(0,Q) = P(Q1) HP(Qt+1|Qt) P(0¢Q:)
— t=1 t=1 AN

Initial state probability T Emission probabilities

State transition probabilities
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EM and Baum-Welch

EM finds a local optimum in P(0|08).

You can show that after each step of EM:
P(0|6**1) > P(0|6%)

However, this is not necessarily a global optimum.

?
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Dealing with Local Optima

Random restarts
* Train multiple models with different random initializations
 Model selection on development set to pick the best one

Biased initialization

e Bias your initialization using some external source of
knowledge (e.g., external corpus counts or clustering
procedure, expert knowledge about domain)

e Further training will hopefully improve results



Caveats

Baum-Welch with no labelled data generally gives poor

results, at least for linguistic structure (~40% accuracy,
according to Johnson, (2007))

Semi-supervised learning: combine small amounts of
labelled data with larger corpus of unlabelled data



In Practice

Per-token (i.e., per word) accuracy results on WS
corpus:

Most frequent tag baseline ~90—94%
HMMs (Brants, 2000) 96.5%

Stanford tagger (Manning, 2011) 97.32%



Other Sequence Modelling Tasks

Chunking (a.k.a., shallow parsing)
* Find syntactic chunks in the sentence; not hierarchical
[\pThe chicken] [ crossed] [ypthe road] [pacross] [\pthe lake].

Named-Entity Recognition (NER)

* |dentify elements in text that correspond to some high
level categories (e.g., PERSON, ORGANIZATION, LOCATION)

lorsMCcGill University] is located in [ ,c-Montreal, Canada].

* Problem: need to detect spans of multiple words



First Attempt

Simply label words by their category

ORG ORG ORG - ORG - - - LOC
McGill, UQAM, UdeM, and Concordia are located in Montreal.

What is the problem with this scheme?



1OB Tagging

Label whether a word is inside, outside, or at the
beginning of a span as well.

For n categories, 2n+1 total tags.

BORG IORG O O O BLOC ILOC
McGill University is located in Montreal, Canada

Bore Borg Bors O Borg O O O B
McGill, UQAM, UdeM, and Concordia are located in Montreal.
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Sequence Modelling with Linguistic
Features



Shortcomings of Standard HMMs

How do we add more features to HMMs?

Might be useful for POS tagging:

Word position within sentence (15, 2n9, |ast...)
Capitalization
Word prefix and suffixes (-tion, -ed, -ly, -er, re-, de-)

Features that depend on more than the current word or
the previous words.
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Possible to Do with HMMs

Add more emissions at each timestep

s
s s

Word identity Capitalization Prefix feature Word position

Clunky
Is there a better way to do this?
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Discriminative Models

HMMs are generative models

* Build a model of the joint probability distribution P(0, Q),
* Let’s rename the variables
* Generative models specify P(X,Y; 65¢)

If we are only interested in POS tagging, we can instead
train a discriminative model
. Model specifies P(Y|X; 915

* Now a task-specific model for sequence labelling; cannot
use it for generating new samples of word and POS
seguences
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Generative or Discrnminative?

Naive Bayes
P(ylx) = P(y) I1; P(x;ily) / P(X)

Logistic regression

P(ylx) _ 1 a1x1+a2x2+ .+ anxn +b

Z
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Discrimiative Sequence Model

The parallel to an HMM in the discriminative case:
linear-chain conditional random fields (linear-chain
CRFs) (Lafferty et al., 2001)

1
PYIX) = 5750 )| ) Bufie i1, )
t ke«

\ sum over all features
sum over all time-steps

Z(X) is a normalization constant:

Z00 = ) exp ) > OufiVe Ver, )
t k

X\
sum over all possible sequences of hidden states
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Intuition

Standard HMM: product of probabilities; these
probabilities are defined over the identity of the states
and words
* Transition from state DT to NN: P(y;,1 = NN|y; = DT)
* Emit word the from state DT: P(x; = the|y; = DT)

Linear-chain CRF: replace the products by numbers
that are NOT probabilities, but linear combinations of
weights and feature values.
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Features in CRFs

Standard HMM probabilities as CRF features:

* Transition from state DT to state NN
for-nn Ve, Ye-1, %) = 1(Y¢—q = DT) 1(y; = NN)
* Emit the from state DT
for—the Ve, Yi-1, %) = 1(ye = DT) 1(x; = the)
* Initial state is DT
forvi,x1) = 1(y; = DT)

Indicator function:

Let 1(condition) = 1 if condltwn. is true
0 otherwise
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Features in CRFs

Additional features that may be useful

 Word is capitalized

feap Ve, Ye-1,%t) = 1(y: = 7)1 (x; is capitalized)
* Word ends in —ed

feaWe,Ye-1,%¢) = 1(y: = ?)1(x; ends with ed)
e Exercise: propose more features
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Inference with LC-CRFs

Dynamic programming still works — modify the forward
and the Viterbi algorithms to work with the weight-
feature products.

HMM LC-CRF

Forward algorithm P(X|0) Z(X)

Viterbi algorithm argmax P(X,Y|0) argmaxP(Y|X,0)
Y Y
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Forward Algorithm for HMMs

Create trellis a;(t) fori=1..N,t =1..T
a;j(1) = m;b;(0y) forj=1..N

fort=2..T:
forj=1..
N
a;j(t) = z a;(t — 1a;;b;(0)
=1

P(0|6) = Zaj(T)
=1

Runtime: O(N“T)
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Forward Algorithm for LC-CRFs

Create trellis a;(t) fori=1..N,t =1..T

a;(1) = exp Xy 0 fii" (y1 = j, x1) forj=1 .. N
fort=2..T:

forj=1..N:
N
() = ) it =1 exp ) 0ufi (e = J,Ve-1,%)
=1 k
N

Z(X) = Ea- T
( ) J( ) Transition and emission probabilities replaced

j=1 by exponent of weighted sums of features.

Runtime: O(N?T)
Having Z(X) allows us to compute P(Y|X)
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Viterbi Algorithm for HMMs

Create trellis 6;(t) fori=1..N,t =1..T
fort=2..T:

forj=1..N:
6](t) = ml_ax 6i(t — 1)Cll]b](0t)

Take max 6;(T)
l

Runtime: O(N?T)
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Viterbi Algorithm for LC-CRFs

Create trellis 6;(t) fori=1..N,t =1..T

5;(1) = exp Xy 0 i (y1 = j,x)forj=1..N
fort=2..T:
forj=1..N:

5;(6) = maxd,(t = D exp ) OufieVe = J,Ve-1, %)
k

Take max 6;(T)
l

Runtime: O(N“4T)

Remember that we need backpointers.
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Traming LC-CRFs

Unlike for HMMs, no analytic MLE solution
Use iterative method to improve data likelihood

Gradient descent
A version of Newton’s method to find where the gradient is O

-L.
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Convexity

Fortunately, [(8) is a concave function (equivalently, its
negation is a convex function). That means that we will
find the global maximum of [(@) with gradient descent.

fod fi

Convex Concave

B
B
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Gradient Ascent

Walk in the direction of the gradient to maximize [(0)
* a.k.a., gradient descent on a loss function

HHEW — 901(1 4+ )/Vl(g)

yis a learning rate that specifies how large a step to take.

There are more sophisticated ways to do this update:
* Conjugate gradient
e L-BFGS (approximates using second derivative)
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Gradient Descent Summary

Descent vs ascent

Convention: think about the problem as a minimization
problem

Minimize the negative log likelihood

Initialize 6 = {64, 0, ..., 05} randomly
Do for a while:

Compute VI(8), which will require dynamic programming
(i.e., forward algorithm)
0 <0 —yVi(o)
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Gradient of Log-Likelihood

Find the gradient of the log likelihood of the training
corpus:

1(6) = log l_[ P(y@®|x @)y
[
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Interpretation of Gradient

Overall gradient is the difference between:

Zka 0y 82

the empirical dlstrlbutlon of feature f;, in the training corpus

ZZka v, %2 ) Py, y'|1XD)

it oy
the expected distribution of f;, as predicted by the current
model

and:
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Interpretation of Gradient

When the corpus likelihood is maximized, the gradient
is zero, so the difference is zero.

Intuitively, this means that finding parameter estimate
by gradient descent is equivalent to telling our model
to predict the features in such a way that they are
found in the same distribution as in the gold standard.
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Regularization

To avoid overfitting, we can encourage the weights to
be close to zero.

Add term to corpus log likelihood:
'(6) = logl_[P(Y(‘)IX(‘)) — epo -

o controls the amount of regularization

Results in extra term in gradient:
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Stochastic Gradient Descent

In the standard version of the algorithm, the gradient is
computed over the entire training corpus.
* Weight update only once per iteration through training
Corpus.
Alternative: calculate gradient over a small mini-batch
of the training corpus and update weights then

 Many weight updates per iteration through training
corpus

e Usually results in much faster convergence to final
solution, without loss in performance
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Stochastic Gradient Descent

Initialize 8 = {04, 05, ..., 0} randomly
Do for a while:
Randomize order of samples in training corpus

For each mini-batch in the training corpus:

Compute V*I(8) over this mini-batch
0 <0 —yVL(0)
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