Sentiment Analysis

Xiaodan Zhu National Research Council Canada, Ottawa

Sentiment Analysis of Social Media Texts

Xiaodan Zhu National Research Council Canada, Ottawa

Sentiment Analysis of Social Media Texts

sh

Xiaodan Zhu

National Research Council Canada, Ottawa

Sentiment Analysis of Social Media Texts

sh

Xiaodan Zhu

National Research Council Canada, Ottawa

We discuss

- sentiment analysis,
- social media text processing,

and review the following technologies/components:

- lexical semantics,
- classification models,
- sequence labeling models,
- syntactic parsing,
- semantic composition,

through a cool application, and several state-of-the-art models.

 Is a given piece of text positive, negative, or neutral?

Sentiment Analysis: Applications

- Tracking sentiment towards politicians, movies, products
- Security applications
- Detecting happiness and well-being
- Improving customer relation models
- Measuring the impact of activist movements through text generated in social media.
- Identifying what evokes strong sentiment in people
- Improving automatic dialogue systems
- Improving automatic tutoring systems
- Detecting how people use emotion-bearing-words and metaphors to persuade and coerce others

Can a machine feel *love*?

— "The Emotion Machine", Marvin Minsky.

 Is a given piece of text positive, negative, or neutral?

- Is a given piece of text positive, negative, or neutral?
- Semantic differential (Osgood et al., 1957)
 - Three main factors accounted for most of the variation in the connotative meaning of adjectives
 - evaluative: good-bad
 - potency: strong-weak
 - activity: active-passive

 Is a given piece of text positive, negative, or neutral?

Emotion Analysis

- What emotion is being expressed in a given piece of text?
 - Basic emotions: joy, sadness, fear, anger, surprise...
 - Other emotions: guilt, pride, optimism, frustration,...

• Large volume: 500 million tweets posted every day!

- Large volume: 500 million tweets posted every day!
- SMS messages
- Customer reviews
- Blog posts
- Tweets
- Facebook posts
- ...and so on.

Short, informal pieces of text.

- Informal
- Abbreviations and shortenings
- Large vocabulary & wide array of topics
- Spelling mistakes

- Informal
- Abbreviations and shortenings
- Large vocabulary & wide array of topics
- Spelling mistakes

On the other hand:

- Rich information and (noisy) human annotation are freely available.
 - Emoticons: ② :-p
 - Hashtags: #loveobama
 - Capital information: that's really what you MUST TRY

Problems

- Message-level sentiment analysis
- Phrase(term)-level sentiment analysis
- Aspect-level sentiment analysis

Problems

- Message-level sentiment analysis
- Phrase(term)-level sentiment analysis
- Aspect-level sentiment analysis

Message-Level Sentiment: The Task

Tweet: Happy birthday, Hank Williams. In honor if the Hank turning 88, we'll play 88 Hank songs in a row tonite @The_Z00_Bar. #honkytonk positive

```
Tweet: #Londonriots is trending 3rd worldwide .....
This is NOT something to be proud of United
Kingdom!!! Sort it out!!!!

negative
```

Tweet: On the night Hank Williams came to town.

neutral

Message-Level Sentiment: The Task

Tweet: Happy birthday, Hank Williams. In honor if the Hank turning 88, we'll play 88 Hank songs in a row tonite @The_Z00_Bar. #honkytonk positive

```
Tweet: #Londonriots is trending 3rd worldwide .....
This is NOT something to be proud of United
Kingdom!!! Sort it out!!!!

negative
```

Tweet: On the night Hank Williams came to town.

neutral

(conflicting sentiments vs. target-based sentiment)

You can write rules (Reckman et al., 2013)

- Develop lexicalized hand-written rules: each rule is a pattern that matches words or sequences of words.
 - Examples:

 Background data: use blogs, forums, news, and tweets to develop the rules.

Remarks

- Carefully developed rule-based systems can sometimes achieve completive performance on the data/domains they are created for.
- Advantages: explicit knowledge representation, so intuitive to develop and maintain.
- Problems
 - Coverage: hand-written rules often have limited coverage, so recall is often low. This can impact the overall performance.
 - Extensibility: not easy to be extended to new data/domains;
 rule-based models have inherent difficulty in automatically acquiring knowledge.
 - Modeling capability, feature interactions, rule conflicts, uncertainty, etc.

Remarks (continued)

- The main stream is statistical approaches, which achieve top performance across different tasks and data sets.
 - Note that knowledge acquired by applying rules can often be easily incorporated as features into statistical approaches.

- Classification
 - Pick your classifier: SVM
 - Pick you kernels?

How to decide message-level sentiment?

Features

- Informal
- Abbreviations and shortenings
- Large vocabulary & wide array of topics
- Spelling mistakes

On the other hand:

- Rich information and (noisy) human annotation are freely available.
 - Emoticons: ② :-p
 - Hashtags: #loveobama
 - Capital information: that's really what you MUST TRY

How to decide message-level sentiment?

Features	Examples
word n-grams	spectacular, like documentary
char n-grams	un, dis, …
part of speech	#N: 5, #V: 2, #A:1; just; like
word clusters	probably, definitely, def; good; bad;
all-caps	YES, COOL
punctuation	#!+: 1, #?+: 0, #!?+: 0
emoticons	:D, >:(
elongated words	cooooool, yaayyy
sentiment lexicon	<pre>#positive: 3, scorePositive: 2.2; maxPositive: 1.3; last: 0.6, scoreNegative: 0.8, scorePositive_neg: 0.4</pre>
negation	#Neg: 1; ngram:perfect → ngram:perfect_neg, polarity:positive → polarity:positive_neg

How to decide message-level sentiment?

Features	Examples
word n-grams	spectacular, like documentary
char n-grams	un, dis, …
part of speech	#N: 5, #V: 2, #A:1; just; like
word clusters	probably, definitely, def; good; bad;
all-caps	YES, COOL
punctuation	#!+: 1, #?+: 0, #!?+: 0
emoticons	:D, >:(
elongated words	cooooool, yaayyy
sentiment lexicon	<pre>#positive: 3, scorePositive: 2.2; maxPositive: 1.3; last: 0.6, scoreNegative: 0.8, scorePositive_neg: 0.4</pre>
negation	#Neg: 1; ngram:perfect → ngram:perfect_neg, polarity:positive → polarity:positive_neg

Manual Sentiment Lexicons

Lists of positive and negative words:

Positive spectacular okay

Negative lousy bad

Sentiment Lexicons: Manually Created

- General Inquirer (Stone, Dunphy, Smith, Ogilvie, & associates, 1966): ~3,600 words
- MPQA (Wilson, Wiebe, & Hoffmann, 2005): ~8,000 words
- Hu and Liu Lexicon (Hu and Liu, 2004): ~6,800 words
- NRC Emotion Lexicon (Mohammad & Turney, 2010): ~14,000 words and ~25,000 word senses
 - senses are based on categories in a thesaurus
 - has emotion associations in addition to sentiment
- AFINN (by Finn Årup Nielsen in 2009-2011): ~2400 words
- MaxDiff Sentiment Lexicon (Kiritchenko, Zhu, and Mohammad, 2014): about 1,500 terms
 - has intensity scores

Sentiment Lexicons

Two major issues:

Sentiment Lexicons

Two major issues: (1) coverage;

Sentiment Lexicons

Two major issues: (1) coverage; (2) detailed sentiment scale.

Positive spectacular 0.91 okay 0.30

Negative lousy -0.84 bad -0.97

Turney and Littman (2003) Method

- Created a list of seed sentiment words:
 - positive seeds (Pwords): good, nice, excellent, positive, fortunate, correct, superior
 - negative seeds (Nwords): bad, nasty, poor, negative, unfortunate, wrong, inferior

Turney and Littman (2003) Method

- Pointwise Mutual Information (PMI) based measure
- PMI between two words, w1 and w2 (Church and Hanks 1989):

```
PMI(w1, w2) = log_2(p(w1 \text{ and } w2)/p(w1)p(w2))
```

p(w1 and w2) is probability of how often w1 and w2 co-occur p(w1) is probability of occurrence of w1 p(w2) is probability of occurrence of w2

Turney and Littman (2003) Method (continued)

For every word W a sentiment association score is generated:

PMI = pointwise mutual information

$$PMI(w, positive) = \sum_{pword \in Pwords} PMI(w, Pword)$$

If score(w) > 0, then word w is positive

If score(w) < 0, then word w is negative

Hashtagged Tweets

Hashtagged words are good labels of sentiments and emotions

```
Can't wait to have my own Google glasses #awesome
Some jerk just stole my photo on #tumblr. #grr #anger
```

Automatically Generated New Lexicons

- Polled the Twitter API for tweets with seed-word hashtags
 - A set of 775,000 tweets was compiled from April to December 2012
- Sentiment lexicons can be generated from sentiment-labeled data
 - Emoticons and hashtag words can be used as labels

PMI-based Lexicons

- Hashtag Sentiment Lexicon
 - created from a large collection of hashtagged tweets
 - has entries for ~215,000 unigrams and bigrams
- Sentiment140 Lexicon
 - created from a large collection of tweets with emoticons
 - Sentiment140 corpus (Alec Go, Richa Bhayani, and Lei Huang, 2009)
 - http://help.sentiment140.com/for-students/
 - has entries for ~330,000 unigrams and bigrams

SemEval: International Workshop on Semantic Evaluation

SemEval*-2013 Task 2: Sentiment Analysis in Twitter

- Message-level task (44 teams)
 - tweets set: 1st
 - SMS set: 1st
- Performance
 - Tweets: Macro-averaged F: 69.02
 - Tweets: Macro-averaged F: 68.42

Message-Level Sentiment: The Data (Semeval-2013 Task 2)

Training: ~ 10,000 labeled tweets

positive: 40%

negative: 15%

neutral: 45%

Imbalanced categories!!

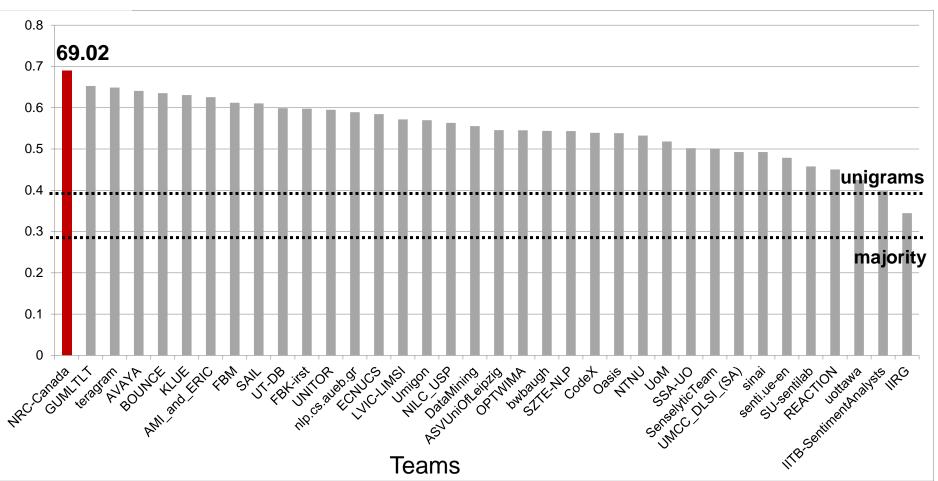
Test:

tweets: ~ 4,000

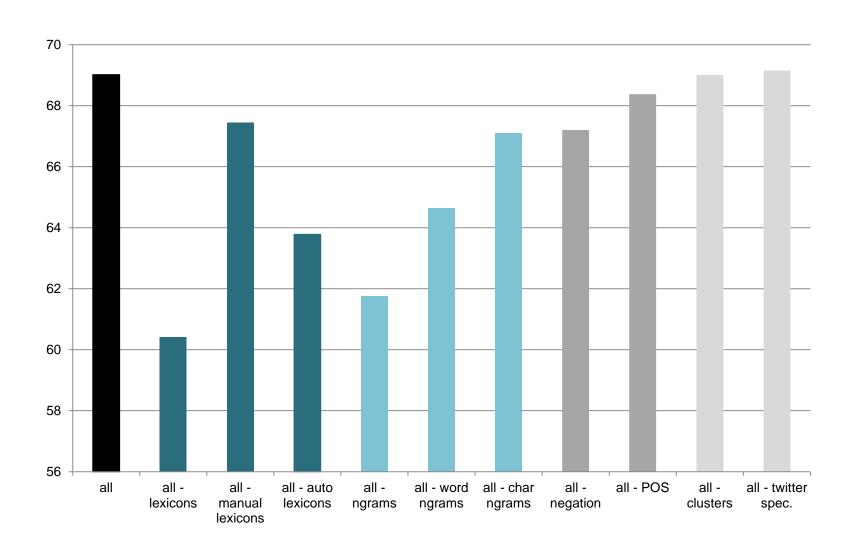
SMS: ~ 2,000

Detailed Results on Tweets

F-score

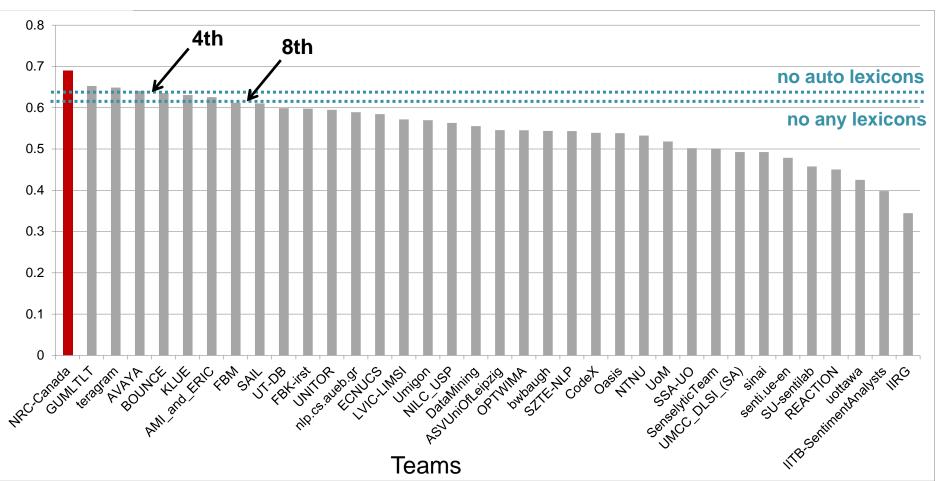


Feature Contributions on Tweets



Detailed Results on Tweets

F-score



Negation

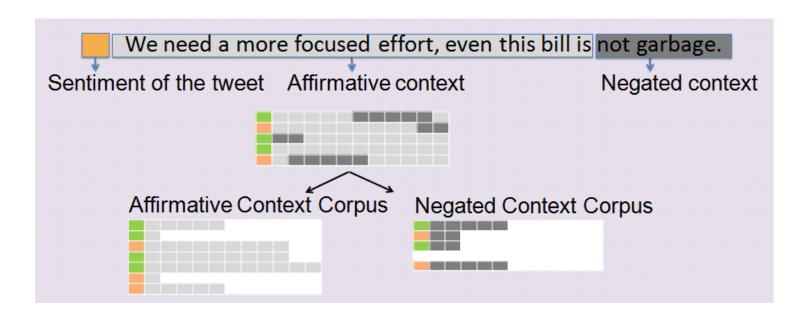
 Why negation? Negation often significantly affects the sentiment of its scopes.

$$\begin{array}{c|c} \underline{\mathsf{not}} & \underline{\mathsf{very}} \ \underline{\mathsf{good}} \\ \uparrow & & \\ \hline \\ \mathsf{negator} & w_n & \mathsf{argument} & \vec{w_a} \end{array}$$

 Negation has a complex effect on sentiment (Zhu et al. '14; Socher et al. '12)

Improving the Systems for SemEval-2014 Task 9

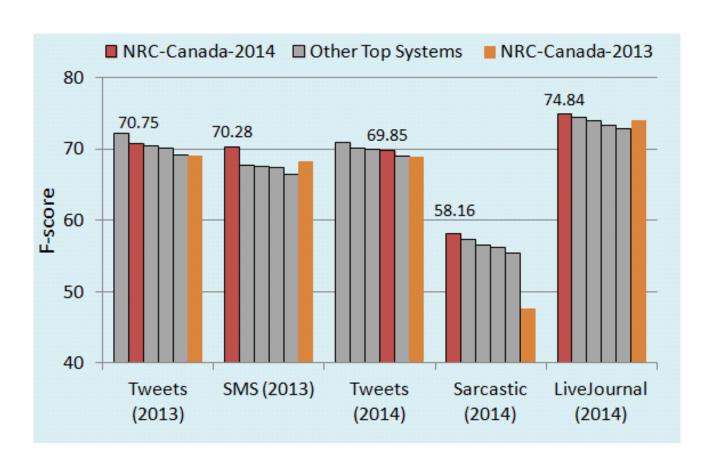
 In our SemEval-2014 system, we adopted a lexicon-based approach to determine the sentiment of words in affirmative and negated context.



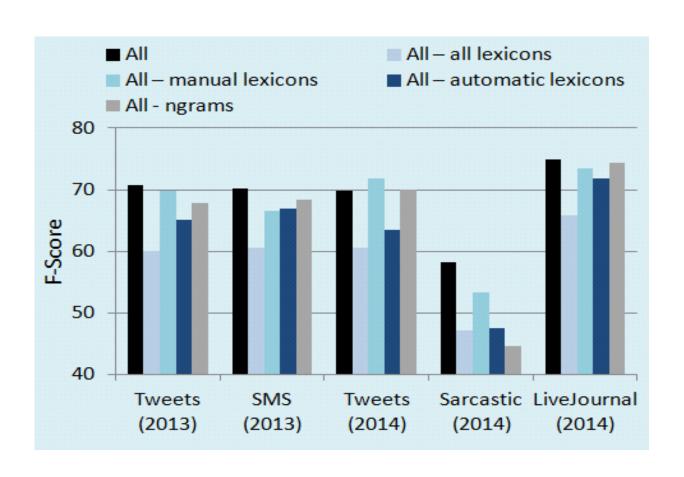
Message-Level Sentiment: The Data (Semeval-2014 Task 9)

- Training (same as in SemEval-2013): ~ 10,000 labeled tweets
 - positive: 40%
 - negative: 15%
 - neutral: 45%
- Test
 - Official 2014 data:
 - tweets: ~ 2,000
 - sarcastic tweets: ~ 100
 - LiveJournal blogs (sentences): ~ 1,000
 - Progress (SemEval-2013 test data):
 - tweets: ~ 4,000
 - SMS: ~ 2,000

Official Performance/Rankings



Ablation Effects of Features



Message-Level Sentiment: Summary

- No deep analysis; utilized big data and free (noisy) human annotation
- Automatically built lexicon and better negation handling improve the performance significantly.
- Best micro- and macro-averaged results on all 5 datasets
- System trained on tweets showed similar performance on SMS and LiveJournal blog sentences
- Strong performance on sarcastic tweets
- Most useful features on all datasets:
 - sentiment lexicons, especially automatic tweet-specific lexicons (free available!)

Problems

- Message-level sentiment analysis
- Phrase(term)-level sentiment analysis
- Aspect-level sentiment analysis

Term-Level Sentiment: The Problem

Tweet: plot of this movie is quite <u>unpredictable</u>, which is what I like. target is positive

Tweet: the performance of our team is <u>unpredictable</u>, making me nervous.

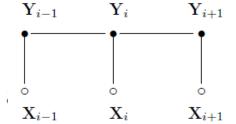
target is negative

Further Clarification of the Problem

The task is not defined as a sequence labeling problem:

Tweet:
$$\underline{\text{w1}} \ \underline{\text{w2}} \ \underline{\text{w3}} \ \underline{\text{w4}} \ \underline{\text{w5}} \ \underline{\text{w6}} \ \underline{\text{w7}} \ \underline{\text{w8}} \ \underline{\text{w9}}$$
. obj pos neu obj neg

no boundary detection is required



no need to label all expressions in a

 It is an independent classification problem for each sentiment term.

Tweet:
$$w1 \ w2 \ \underline{w3} \ w4 \ \underline{w5} \ w6 \ w7 \ \underline{w8 \ w9} \ .$$

- Term-level sentiment (within tweets, blogs, SMS)
 - SemEval-2013 Task 2, SemEval-2014 Task 9

Basic Feature Categories

Features	Description	
term features	extracted from the target terms, including all the features discussed above.	
context features	extracted from a window of words around a target term or the entire tweet, depending on features.	

Official Performance/Rankings

- Tweets
 - Macro-averaged F: 89.10
 - 1st place
- SMS
 - Macro-averaged F: 88.34
 - 2st place

Term Features vs. Context Features

Are contexts helpful? How much?

Experiment	Tweets	SMS
all features	89.10	88.34
all - target	72.97 (-16.13)	68.96 (-19.38)
all - context	85.02 (-4.08)	85.93 (-2.41)

- By large, sentiment of terms can be judged by the target terms themselves.
- The contextual features can additionally yield 2-4 points improvement on F-scores.

Improving the Systems for SemEval-2014 Task 9

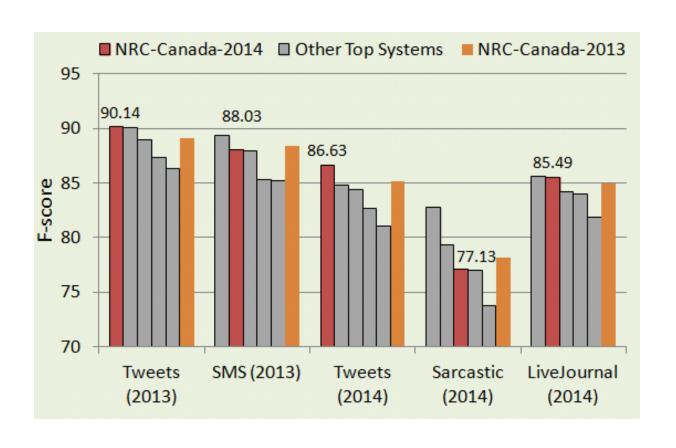
- Improving sentiment lexicons (as in message-level models)
 - Using a lexicon-based approach (Kiritchenko et al., '14) to determining the sentiment of words in affirmative and negated context.
- Discriminating negation words
 - Different negation words, e.g. never and didn't, can affect sentiment (Zhu et al., 2014) differently.
 - We made a simple, lexicalized modification to our system
 This is never acceptable

The word acceptable is marked as acceptable_not in our old system but as acceptable_beNever in our new system.

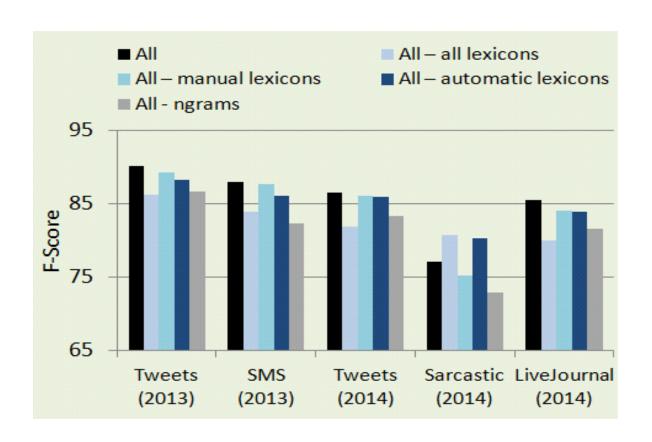
Term-Level Sentiment: The Data (Semeval-2014 Task 9)

- Training (same as in SemEval-2013): 8,891 terms
 - positive: 62%; negative: 35%; neutral: 3%
- Test
 - Official 2014 data:
 - tweets: 2,473 terms
 - sarcastic tweets: 124
 - LiveJournal blogs: 1,315
 - Progress (SemEval-2013 test data):
 - tweets: 4,435
 - SMS: 2,334

Official Performance/Rankings



Ablation Effects of Features



Summary

- Better handling of negation words is helpful.
- Effect of lexicon features
 - Sentiment lexicons automatically built from tweets are particularly effective in our models.

Problems

- Message-level sentiment analysis
- Phrase(term)-level sentiment analysis
- Aspect-level sentiment analysis

Aspect-Level Sentiment

- Sub-Task 1: Aspect term extraction
 - Find terms in a given sentence that are related to aspects of the products.
- Sub-Task 2: Aspect term polarity
 - Determine whether the polarity of each aspect term is positive, negative, neutral or conflict.
- Sub-Task 3: Aspect category detection
 - Identify aspect categories discussed in a given sentence (e.g., food, service)
- Sub-Task 4: Aspect category polarity
 - Determine the polarity of each aspect category.

Aspect-Level Sentiment

- Sub-Task 1: Aspect term extraction
 - Find terms in a given sentence that are related to aspects of the products.
- Sub-Task 2: Aspect term polarity
 - Determine whether the polarity of each aspect term is positive, negative, neutral or conflict.
- Sub-Task 3: Aspect category detection
 - Identify aspect categories discussed in a given sentence (e.g., food, service)
- Sub-Task 4: Aspect category polarity
 - Determine the polarity of each aspect category.

Aspect Term Polarity: The Task

The <u>asian salad</u> of Great Asian is barely eatable.

Task: in the sentence above, what's the sentiment expressed towards the target term "asian salad"?

Aspect Term Polarity: The Task

This is different from the "term-level" sentiment analysis.
 The <u>asian salad</u> of Great Asian is <u>barely eatable</u>.
 aspect terms sentiment terms

How the task is different from the previous two?

Aspect Term Polarity: The Features

- Consider two examples:
 - Long-distance sentiment phrases
 The <u>ma-po tofu</u>, though not as spicy as what we had last time, is actually <u>great</u> too.
 - Local ambiguity
 a serious <u>sushi</u> lover

Aspect Term Polarity: The Features

- Syntactic features
 - Consider long-distance sentiment phrases
 The ma-po tofu, though not as spicy as what we had last time, is actually great too.
 - Consider local syntax
 a serious <u>sushi</u> lover

- Word- and POS-ngrams in the parse context
- Context-target bigrams, i.e., bigrams composed of a word from the parse context and a word from the target term
- All paths that start or end with the root of the target terms
- Sentiment terms in parse context

Aspect Term Polarity: The Features

- Surface features
 - Unigrams
 - Contex-target bigrams (formed by a word from the surface context and a word from the target term itself)
- Lexicon features
 - Number of positive/negative tokens
 - Sum/maximum of the tokens' sentiment scores

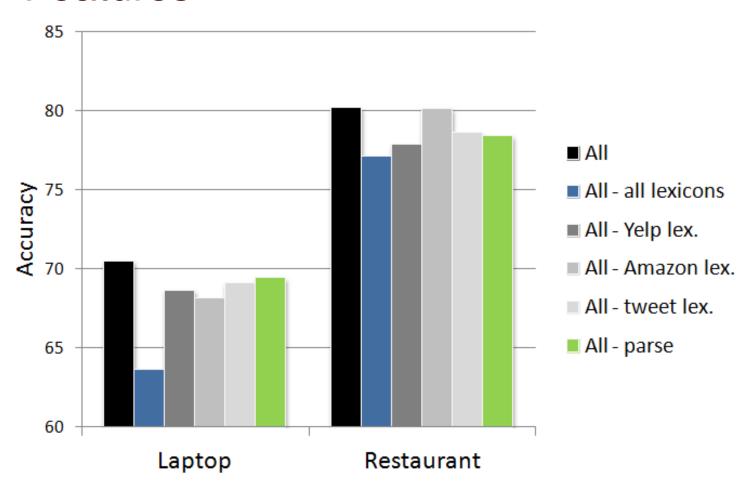
Aspect Term Polarity: The Data

- Customer reviews
 - Laptop data
 - Training: 2358 terms
 - Test: 654 terms
 - Restaurant data
 - Training: 3693 target terms
 - Test: 1134 terms
- Pre-processing
 - We tokenized and parsed the provided data with Stanford CoreNLP Toolkits to obtain (collapsed) typed dependency parse trees (de Marneffe et al., 2006).

Aspect Term Polarity: Results

- Laptop reviews
 - Accuracy: 70.49
 - 1st among 32 submissions from 29 teams
- Restaurant reviews
 - Accuracy: 80.16
 - 2nd among 36 submissions from 29 teams

Aspect Term Polarity: Contributions of Features



Sentiment Analysis of Social Media Texts

- Message-level sentiment analysis
- Phrase(term)-level sentiment analysis
- Aspect-level sentiment analysis

Use your NLP "tools" (skills) you have learned in this class to solve research or/and application problems.

Sentiment Analysis of Social Media Texts

- Message-level sentiment analysis
- Phrase(term)-level sentiment analysis
- Aspect-level sentiment analysis

Use your NLP "tools" (skills) you have learned in this class to solve research or/and application problems.

NLP is not just a tool sets ...

Questions?