
In Proceedings of the 22nd International Conference on Software Maintenance, pp. 14–23.
IEEE Computer Society Press, September 2006.c©IEEE, 2006

Managing Concern Interfaces

Jean-Sébastien Boulanger and Martin P. Robillard
School of Computer Science
McGill University, Canada

{jboula2, martin}@cs.mcgill.ca

Abstract

Programming languages provide various mechanisms to
support information hiding. One problem with information
hiding, however, is that providing a stable interface behind
which to hide implementation details involves fixing in ad-
vance the services offered through the interface. We intro-
duce a flexible approach to define and manage interfaces
to achieve separation of concerns in evolving software.
Our approach involves explicitly specifying interface and
implementation classes for individual concerns, and auto-
matically classifying implementation classes based on their
relation to the interface. Our approach is supported by
JMantlet, a tool that provides advanced interface manage-
ment within an integrated development environment. We
report on a case study of a large system that provides evi-
dence that flexible interface management is desirable and
adequately supported by our approach.

1. Introduction

Information hiding [13] is an important principle of soft-
ware engineering. In its general form, this principle dic-
tates that design decisions likely to change should be hid-
den such that their implementation can evolve without af-
fecting the rest of the system. Information hiding motivates
the separation of a program into concerns that each repre-
sent a particular concept or purpose that can be thought of
or changed separately. In practice, programming languages
support separation of concerns and information hiding in a
number of ways: abstract data types, object encapsulation,
application programming interfaces (APIs), modules, Java
packages, C# assemblies, and others. These mechanisms
provide astable interfacethat hides a concern’s implemen-
tation from the rest of the system and allows the implemen-
tation of a concern to evolve without directly affecting the
rest of the program that interacts with that concern. The use
of language mechanisms to enforce separation of concerns
has the advantage that access to a concern’s implementa-
tion can be automatically prevented by the compiler (e.g.,

the Java compiler disallows access toprivate members
outside of the declaring class).

One problem with information hiding is that providing
a stable interface behind which to hide implementation de-
tails involves fixing in advance the services offered through
the interface. In practice, however, the services offered by
an interface in one context might not be sufficient or appro-
priate in a different context. In such cases, developers are
faced with the decision of either complying with the inter-
face (possibly giving up on a service), or accessing the im-
plementation (which introduces coupling and may lead to
maintenance problems). Design idioms, such as interface
segregation, can help mitigate this problem, but have lim-
itations of their own (e.g., proliferation of interfaces, ver-
sioning problems).

In this paper we present a tool-based approach to infor-
mation hiding. Our approach provides support to define
a concern model that can restrict or permit access to the
implementation of a service based on the context (project)
in which it is used. Our approach also provides a flexible
mechanism to manage the evolution of concern interfaces
and provides information that can help the programmer rea-
son about the interface of concerns. To conduct the initial
experimentation and validation of our approach, we imple-
mented JMantlet, an Eclipse plug-in for the Java program-
ming language. As an initial validation of our approach,
we conducted a study of the implementation of a concern
in the JBoss application server.

The rest of this paper is structured as follows. In Sec-
tion 2 we provide a detailed scenario that motivates our ap-
proach in the context of a Java program. In Section 3, we
describe the features of JMantlet, a short usage scenario,
and an overview of its implementation. We presents our
study in Section 4. We discuss related work in Section 5,
and conclude in the Section 6.

2. Motivation

Let us consider a software maintenance scenario involv-
ing high-level concerns. In this scenario, a developer is
working on a Java application that uses an email service ab-
stracted as the standard JavaMailTMAPI [17]. As for most



of the APIs in the J2EE architecture,1 the actual imple-
mentation of the JavaMail API is left to third parties. For
example, the GNU Classpath project2 provides a free im-
plementation of multiple transport protocols (e.g., IMAP,
SMTP, POP3) that are organized in multiple packages. Fig-
ure 1 shows the seven packages of GNU’s JavaMail imple-
mentation followed by the four packages of the standard
API.

gnu.mail.providers.imap
gnu.mail.providers.maildir
gnu.mail.providers.mbox
gnu.mail.providers.nntp
gnu.mail.providers.pop3
gnu.mail.providers.smtp
gnu.mail.util
javax.mail
javax.mail.event
javax.mail.internet
javax.mail.search

Figure 1. Packages of GNU’s JavaMail 1.0

Let us assume that the developer chooses the GNU im-
plementation for the application and adds the GNU class
library to the project’s classpath. At this point, the de-
veloper will be able to refer to the GNU implementation
classes of the JavaMail API from within the project. How-
ever, if the application code directly refers to classes in
the gnu.mail.* packages, different parts of the system
will become coupled to the implementation of JavaMail.
If GNU classes change (i.e., are updated to a later re-
lease), the developer may have to modify and re-test multi-
ple code locations. The obvious solution to this problem
is to refer only to the JavaMail API (i.e., classes in the
javax.mail.* packages). This strategy allows the ap-
plication to evolve independently from the JavaMail imple-
mentation. The core of the J2EE architecture is based on
this idea. Unfortunately, although it sounds simple in the-
ory, avoiding references to implementation classes can be
problematic in practice for at least two reasons: there is
no mechanism to enforce module boundaries, and standard
interfaces are inflexible.

No mechanism to enforce module boundaries. Even if
there exists an explicit guideline not to refer to GNU classes
except to instantiate objects, this design decision cannotbe
enforced by the compiler since many of the GNU classes
have apublic access qualification. This visibility is nec-
essary to instantiate the classes, but also to allow code reuse
across implementation packages. As a result, every present
and future developer involved in the project must ensure
that the implementation classes are not referred to.

1Java 2 Platform, Enterprise Edition. java.sun.com/javaee
2www.gnu.org/software/classpath/

Inflexible standard interfaces. A second problem is that
although the JavaMail API provides a very broad interface
to a general mail system, the implementation of a specific
protocol can provide additional features that are not acces-
sible through the JavaMail API. For example, in the GNU
implementation of the IMAP store there is a method to re-
trieve the disk storage quota of a mailbox. To make use of
that functionality in the application, the developer would
have to refer to the implementation class. In practice, this
may be a necessary and cost-effective decision.

Concern Interface Management. As this scenario il-
lustrates, high-level concerns are not always perfectly ab-
stracted by an API. In our case we have a concern, MAIL ,
that corresponds to the use of an email service. Ideally, the
interface to this concern is the JavaMail API and its im-
plementation is the corresponding set of GNU packages.
However, our development scenario required theenforce-
mentof this concern’s interface in most cases, and itsex-
tensionin a few cases. To address these interacting require-
ments, we propose a technique and tool to support the man-
agement of concern interfaces in a structured way.

3. Tool Support

JMantlet3 is a tool to manage and enforce concern inter-
faces in a program. JMantlet is implemented as a plug-in
for the Eclipse Platform,4 an integrated software devel-
opment environment supporting the addition of function-
alities through a plug-in architecture. In this section, we
describe the features of JMantlet, illustrate the benefits of
the tool with a usage scenario, and present an overview of
the implementation.

3.1. Features

Concern Configuration File. JMantlet provides a mech-
anism to define a concern model that is independent from
the source code and valid in the context of an Eclipse
workspace. Theconcern configuration fileis used to de-
clare the interface and the implementation of the concerns
of a system in XML format (see Figure 4). A concern
configuration file can declare multiple concerns (with the
<concern> XML tag) . Each concern has anameattribute
that is used in the display of the model. A concern’s in-
terface (specified with the<interface> XML tag) con-
sists of a set of types that is defined by matching pat-
terns on type names using the same semantics as Eclipse’s
Java Search.5 For example, in Figure 4, the interface of

3www.cs.mcgill.ca/∼jboula2/jmantlet
4www.eclipse.org
5help.eclipse.org/help31/index.jsp



the defined concern is the union of the types in the pack-
agesjavax.mail, javax.mail.event, javax.mail.-
internet, and javax.mail.search. A concern’s
implementation (specified with the<implementation>
XML tag) is defined using the same approach. If the in-
tersection of the interface and the implementation is not
empty, the interface has precedence over the implementa-
tion.

Concern Model Viewer. The concern model viewerof
JMantlet displays the concern model generated from a con-
cern configuration file (see Figure 2). The viewer displays
each concern in the model and lists the classes that are part
of the interface and implementation, respectively. For im-
plementation classes, the viewer shows additional informa-
tion such as the nature of the relationships with the inter-
face (i.e.,implements, extends) and thecategoryof the im-
plementation class.

Figure 2. JMantlet’s Concern Model Viewer

Our approach makes a classification of implementation
classes that can help the programmer reason about the de-
pendencies between a program and a concern. It can also
help the programmer decide whether a given class should
be part of a concern’s interface. Our classification defines
three categories of concern implementation classes:

1. Implementors. Implementorsare classes that imple-
ment an interface or directly extend a class of a con-
cern’s interface. Our assumption is that the implemen-
tors realize key design decisions for a concern that
should generally be hidden from clients [13].

2. Coupled-Helpers. Coupled-helpersare other classes
that contribute to a concern’s implementation and that
reference the implementors or other coupled-helpers.
Our assumption is that coupled-helpers know about
the key design decisions realized by implementors so
they should also generally be hidden from clients.

3. Decoupled-Helpers. Decoupled-helpersare classes
that only rely on the concern interface. Technically,
decoupled-helpers could be reused across multiple im-
plementation of a concern without any modification.

If needed, the programmer could even consider adding
a decoupled-helper to the concern’s interface so that it
can be used by the rest of the program.

References Alerts. JMantlet alerts the programmer of il-
legal references to a concern’s implementation classes sim-
ilarly to a compilation error. JMantlet creates anerror
marker that is displayed in the Eclipse editor, next to the
reference (see Figure 3). The error is also added to the
standard list of problems (i.e.,Problems view). This mech-
anism ensures that references to implementation classes,
from classes other than classes in the concern’s implemen-
tation, are prohibited within the Eclipse workspace.

Figure 3. Error Alert of an Access to the Im-
plementation

3.2. Usage Scenario

We reuse the JavaMail example of Section 2 to describe
a typical use of JMantlet.

Defining the Concern Interface and Implementation.
The developer first defines the interface and implementa-
tion of MAIL by editing the configuration file (see Figure 4).
In our example the concern’s interface is the set of classes
defined in the four packages of the JavaMail API and the
concern’s implementation is the set of classes defined in
the seven packages of the GNU implementation of Java-
Mail. To enable the instantiation of the GNU implemen-
tation classes, the developer creates a class containing fac-
tory methods [4] that knows how to instantiate the types of
the GNU implementation (i.e.,example.mail.Factory)
and adds it to the interface of the mail concern (Figure 5).

Hiding the Concern’s Implementation. The developer
loads the configuration file into the concern model viewer
of JMantlet, which then displays the types matching the
concern’s interface and implementation definitions, respec-
tively. It also displays the category (i.e., implementor,



<concerns>
<concern name="Mail">

<interface>
<type pattern="javax.mail.*"/>
<type pattern="javax.mail.event.*"/>
<type pattern="javax.mail.internet.*"/>
<type pattern="javax.mail.search.*"/>

</interface>
<implementation>
<type pattern="gnu.mail.providers.imap.*"/>
<type pattern="gnu.mail.providers.maildir.*"/>
<type pattern="gnu.mail.providers.mbox.*"/>
<type pattern="gnu.mail.providers.nntp.*"/>
<type pattern="gnu.mail.providers.pop3.*"/>
<type pattern="gnu.mail.providers.smtp.*"/>
<type pattern="gnu.mail.util.*"/>

</implementation>
</concern>

</concerns>

Figure 4. MAIL Concern Configuration File

coupled-helper, or decoupled-helper) of each implementa-
tion class. Once the tool is enabled in Eclipse, the devel-
oper will be alerted of any reference to a class ofMAIL ’s
implementation (Figure 3).

Extending the Concern’s Interface. Later, a second de-
veloper tries to extend the application to display the re-
maining quota of users’ mailboxes. The developer notices
that there is a method to retrieve this value in the GNU im-
plementation of an IMAP store (i.e., IMAP protocol mes-
sage store) but that there is no such method in the con-
cern’s interface (i.e., JavaMail API). To solve this limita-
tion, the team decides to define their own interface for the
IMAPStore, which they then add to the mail concern’s in-
terface (Figure 5). The second developer then implements
the interface with a class that wraps the GNU implemen-
tation, and adds this class to the concern’s implementation
(Figure 5).

<concerns>
<concern name="Mail">

<interface>
<type pattern="javax.mail.*"/>
<type pattern="javax.mail.event.*"/>
<type pattern="javax.mail.internet.*"/>
<type pattern="javax.mail.search.*"/>
<type pattern="example.mail.Factory"/>
<type pattern="example.mail.IMAPStore"/>

</interface>
<implementation>
<type pattern="gnu.mail.providers.imap.*"/>
<type pattern="gnu.mail.providers.maildir.*"/>
<type pattern="gnu.mail.providers.mbox.*"/>
<type pattern="gnu.mail.providers.nntp.*"/>
<type pattern="gnu.mail.providers.pop3.*"/>
<type pattern="gnu.mail.providers.smtp.*"/>
<type pattern="gnu.mail.util.*"/>
<type pattern="example.mail.gnu.*"/>

</implementation>
</concern>

</concerns>

Figure 5. MAIL Concern Configuration File
with Extensions

Replacing the Concern’s Implementation. Before the
release date, the project manager informs the development
team that they cannot use the GNU library because of a
licensing issue. The developers will have to replace the
use of the GNU library by Sun’s implementation. Be-
cause the dependencies to theMAIL concern are managed
by JMantlet, the task will be localized to theMAIL concern
as defined in JMantlet. A developer performs this task by
modifying theexample.mail.Factory class to instanti-
ate Sun’s classes instead of GNU’s classes, implements a
wrapper class for the IMAP store that uses Sun’s classes,
and updatesMAIL in the concern configuration file.

3.3. Implementation Overview

The JMantlet Eclipse plug-in takes as input theconcern
configuration file. The Concern Model Builderbuilds a
model that includes all the classes that define the concerns’
interface and implementation, as well as the dependen-
cies between the implementation classes. TheReference
Checkeranalyzes each class in the workspace and deter-
mines the references to the implementation of the model’s
concerns. TheReference Checkergenerates an error (in
Eclipse an error marker) for each reference found. TheIn-
cremental Project Builderis responsible for calling theRef-
erence Checkeron the compilation units that are built in the
workspace. TheConcern Model Viewerdisplays the con-
cern model in the workbench. We describe the components
that have not been discussed in Section 3.1.

Concern Model Builder. The Concern Model Builder
receives the sets of types that make up the interface and
the implementation of a concern as an input. It finds the set
of classes that are specific to the implementation by filter-
ing out the classes that intersect both sets. Then, the algo-
rithm finds theimplementors, the classes that implements
or extends a class of the concern’s interface. Recursively,
it finds all the classes of the implementation that refer to an
implementor or to a class that refers an implementor, and
classifies these classes ascoupled-helpers. Remaining im-
plementation classes are classified asdecoupled-helpers.

Reference Checker. The Reference Checkeruses the
concern model to determine if a given compilation unit
contains any reference to an implementation-specific type
of a concern. If it finds such a reference, it creates a marker
at its location. The message of the marker indicates the
category of the class that is referenced in the code (imple-
mentor, coupled-helper, or decoupled-helper).

Incremental Project Builder. The Incremental Project
Builder is added to Eclipse’s build process such that when



a resource or a project is built, it can pass the built compi-
lation units to the Reference Checker, which will find the
references and re-generate the markers.

4. JBoss Case Study

In this section we present a study of the evolution of
the implementation of a Java API across the history of the
JBoss source code. The goal of the study was to investi-
gate actual changes to a concern’s interface and implemen-
tation as part of the evolution of a well-designed system.
The study provides evidence that concern interfaces need
to be explicitly managed in practice. The study also pro-
vides evidence in support of the intuitions underlying our
classification scheme.

4.1. Target System and Concern of Interest

JBoss is an open-source J2EE-compliant application
server that provides services to simplify the development of
distributed applications. The JBoss project began in 1999
as a simple Enterprise Java Bean container and has since
grown into a full-blown enterprise development platform.
Today JBoss comprises multiple projects and has over six
million lines of code in its repository. The JBoss project has
a number of desirable characteristics that made it particu-
larly suitable for our study: it is open-source, it implements
multiple Java APIs that are associated with high-level con-
cerns, and it is a mature project (over six years) with a rel-
atively clean object-oriented design.

The concern we chose to investigate is the support for
transactions, or the implementation of the Java Transac-
tion API (JTA) [16]. Transactions and distributed trans-
actions come in many flavors and are not trivial to imple-
ment. Moreover, implementation decisions (e.g., optimistic
vs. pessimistic concurrency control [18]) involves many
trade-offs that can influence quality attributes of the sys-
tem such as integrity, robustness, and performance. Trans-
action support is a concern that has evolved and is likely
to continue to evolve, thus, of particular interest for our
study. For the remainder of this section we will refer to
this concern as TRANSACTION. In the J2EE 1.4 API,6

TRANSACTION’s API is defined by seven interfaces and
ten exceptions within two packages (Figure 6). JBossJTA7

is the JBoss implementation of the standard API and its
source code is located within theorg.jboss.tm package.
The package contains a number a classes implementing the
core interfaces of JTA such asTransactionManager and
Transaction. The package also contains extra interfaces
and helper classes that contribute to the concern’s imple-
mentation.

6java.sun.com/j2ee/1.4/docs/api
7wiki.jboss.org/wiki/Wiki.jsp?page=JBossJTA

javax.transaction

Status HeuristicCommitException
Synchronization HeuristicMixedException
Transaction HeuristicRollbackException
TransactionManager InvalidTransactionException
UserTransaction NotSupportedException

RollbackException
SystemException
TransactionRequiredException
TransactionRolledbackException

javax.transaction.xa

XAResource XAException
Xid

Figure 6. Java Transaction API

4.2. Methodology

We analyzed the evolution of TRANSACTION’s imple-
mentation classes from their creation to their last revision
on the MAIN branch up to the 1 February 2006. To browse
the CVS repository we used the FishEye web-based tool
provided on JBoss website.8

To study the evolution of TRANSACTION’s implicit in-
terface, we examined 26 versions of JBoss exhibiting non-
trivial differences in the implementation of TRANSACTION

(not tagged versions, but snapshots of the repository at mid-
night on chosen dates). We selected the different versions
for our study as follow:

1. Using the FishEye tool, we browsed through each
file in the /jboss-transaction/src/main/-

org/jboss/tm folder of the JBoss repository. We
compared each pair of consecutive revisions with
the difference tool, and found all cases for which
a public member of a TRANSACTION class had
changed (e.g., method signature, deleted mem-
bers). For example, we inspected the difference
between revision 1.1 and 1.2 ofTransactionImpl.
In that case we found that the constructor
TransactionImpl(TxCapsule, XidImpl) had
been modified toTransactionImpl(TxCapsule,
Xid), we recorded the date of that change. Then, for
the same file, we inspected the difference between
revision 1.2 and 1.3; then, between 1.3 and 1.4, and
so on.

2. We collected all the dates recorded as part of step 1.
This resulted in a set of 26 dates.

3. We decremented each date by two days. For exam-
ple, because we observed changes to TRANSACTION

8fisheye.jboss.com



being committed on 5 July 2002, we recorded 3 July
2002. This way, we know that the 3 July 2002 ver-
sion will be different from any version that comes af-
ter 5 July 2002. We chose to backtrack two days based
on the assumption that a given change task would be
committed to the repository within the same 24 hour
period, since programmers tend to avoid committing
partial changes that may break a build.9

After selecting the versions for study, we wrote a con-
figuration file that defined the interface and the imple-
mentation of TRANSACTION. We coded the interface
as the set of types within thejavax.transaction and
javax.transaction.xa packages and the implementa-
tion as the set of types within theorg.jboss.tm pack-
age. Then, for each of the 26 dated versions, we checked
out a copy of the JBoss source code from the repository,
which we then imported into Eclipse. Using JMantlet
we identified the references to the concern’s implemen-
tation classes from the remainder of the program. For
each referred class, we recorded each referring class as
well as the category of the referred class (i.e., implemen-
tor, coupled-helper, or decoupled-helper). For example
on 3 July 2002, two recorded references were from the
classorg.jboss.jms.asf.StdServerSession to the
implementorXidImpl. We recorded the other references
in the same fashion.

4.3 Concern Interface Extension

As part of our case study we observed a number of cases
of concern interface extension for TRANSACTION that il-
lustrate the practical need for our approach.

Table 1 contains the number of references to TRANS-
ACTION’s implementationclasses from the rest of the pro-
gram. The first column (Date) contains the date of the
version analyzed. The second major column (TXN Refer-
enced Classes) contains the number of classes in TRANS-
ACTION’s implementation that are referenced in the rest of
the program. The third major column (Classes Refering
To TXN) contains the number of classes in the rest of the
program that reference a class of TRANSACTION’s imple-
mentation. For both variables, we made an additional sub-
division to distinguish between the number of implemen-
tors (I), coupled-helpers (CH), decoupled-helpers (DH),
and the aggregation of all three (All). (The last two ma-
jor columns, Ref. to Changed and Changed Ref., will be
explained later in this section.) The line break in the ta-
ble (Rollback from 4.0 to 3.2) indicates a major change to
most files of the system that was caused by a rollback on the

9In some cases where changes were observed on two consecutivedays
the two versions were almost identical and we took one commondate for
the two changes

MAIN branch from version 4.0 to version 3.2. The rollback
explains the abrupt change in the number of references at
that point in time but does not threaten our results since the
system evolved differently after the rollback.

If the concern interface had been strictly enforced to
JTA standard interfaces, Table 1 would contains only ze-
ros. However, as one can see, many implementation classes
(TXN Referenced Classes) are referenced by many external
classes (Classes Refering to TXN), and the number gener-
ally increases as the system evolves.

A detailed analysis of the references revealed that they
origin from classes implementing multiple other concerns,
some of which are closely related to TRANSACTION (i.e.,
CORBA and aspect-oriented support for transactions), and
some of which are less related concerns (i.e., theMESSAG-
ING SERVICE, SECURITY, andCLUSTERINGconcerns) but
also make references to the classes of the implementation
(mostly decoupled helpers). There are multiple situations
where access to information or functionalities that are not
provided through the JTA interfaces is required, but for
space constraints we only describe three of the most rep-
resentative.

References in MESSAGING. In the project that imple-
ments a messaging service for JBoss (messaging), the
class org.jboss.mq.pm.jdbc2.PersistenceMana-

ger refers to TransactionTimeoutConfiguration

(Decoupled-Helper), an interface implemented by the
transaction manager. TransactionTimeoutConfi-

guration allows to retrieve the timeout of the current
transaction, information that is not available through JTA’s
TransactionManager interface.

References in SECURITY . In the project that imple-
ments the JBoss security framework (security), the
classes org.jboss.security.auth.spi.Database-
ServerLoginModule and org.jboss.security.-

auth.spi.Util both refer to TransactionDemar-

cationSupport (Coupled-Helper). This class provides
utilities to suspend and resume a transaction associated
with the current thread, functionalities that are not provided
through the JTA API.

References in CLUSTER. In the project that imple-
ments JBoss clustering capabilities (cluster), the
class org.jboss.invocation.jrmp.interfaces.-

JRMPInvokerProxyHA refers to the classTransaction-
PropagationContextFactory (Decoupled-Helper),
which allows to retrieve the transaction propagation
context.

In general we observed that JBoss programmers cre-
ated interfaces decoupled from the implementation (i.e.,



Table 1. References to TRANSACTION

TXN Referenced Classes Classes Refering To TXN Ref. to Changed Changed Ref.

Date I CH DH All I CH DH All I CH DH All I CH DH All

3 July 2002 1 1 2 4 1 2 6 8 1 2 0 2 1 0 0 1
19 July 2002 0 1 3 4 0 2 11 12 0 0 0 0 0 0 0 0
15 Sep. 2002 0 1 4 5 0 2 14 15 0 2 0 2 0 0 0 0
24 Nov. 2002 0 1 4 5 0 2 16 17 0 2 0 2 0 0 0 0
27 Nov. 2002 0 1 5 6 0 2 17 18 0 0 0 0 0 0 0 0
28 Nov. 2002 0 1 5 6 0 2 17 18 0 0 5 5 0 0 0 0

14 Feb. 2003 0 1 5 6 0 1 15 15 0 0 0 0 0 0 0 0
23 Apr. 2003 5 4 9 18 5 6 22 26 0 0 0 0 0 0 0 0
3 May 2003 4 5 9 18 5 18 22 38 0 1 0 1 0 0 0 0
14 May 2003 4 5 10 19 5 13 28 38 2 0 0 2 1 0 0 1
30 June 2003 4 5 9 18 5 12 24 34 0 0 10 10 0 0 1 1

ROLLBACK FROM 4.0 TO 3.2
28 Aug. 2003 1 2 6 9 2 9 17 25 0 6 0 6 0 0 0 0
9 Sep. 2003 1 2 5 8 2 15 16 30 0 0 0 0 0 0 0 0

17 Jan. 2004 1 2 6 9 2 16 17 31 0 0 0 0 0 0 0 0
3 Apr. 2004 4 5 6 15 3 23 13 33 0 0 0 0 0 0 0 0
12 Apr. 2004 4 5 7 16 4 23 14 35 0 0 0 0 0 0 0 0
17 Apr. 2004 4 5 8 17 4 23 14 35 1 0 0 1 0 0 0 0

3 Jan. 2005 4 5 9 18 8 30 22 54 1 0 0 1 0 0 0 0
4 Apr. 2005 4 6 9 19 11 35 24 62 0 2 0 2 0 0 0 0
9 Apr. 2005 4 6 9 19 12 35 24 62 4 0 0 4 2 0 0 2
16 Apr. 2005 4 7 10 21 14 37 24 64 4 0 2 4 0 0 2 2
4 May 2005 4 7 12 23 16 37 23 64 6 10 0 13 2 0 0 2
15 June 2005 4 7 12 23 14 36 23 62 5 0 0 5 0 0 0 0
25 July 2005 4 7 12 23 18 36 24 65 16 3 0 17 3 1 0 4
3 Aug. 2005 4 7 14 25 18 40 25 69 6 0 0 6 1 0 0 1
12 Oct. 2005 4 7 15 26 20 40 33 79 6 0 1 7 1 0 1 2

decoupled-helpers) to access this additional information
(see Figure 7). A good example is thetransaction con-
text propagation(discussed above) which is necessary
in order to share the context of a transaction between
its participants (i.e., threads). JBoss programmers de-
fined two interfaces and one class to handle context prop-
agation: TransactionPropagationContextFactory,
which is used to retrieve a transaction propagation con-
text at the client side;TransactionPropagation-
ContextImporter, used for importing a propagation con-
text within the transaction manager; andTransaction-
PropagationContextUtil, which provides methods to
statically access an instance that implements the two inter-
faces. Table 2 shows the total number of references in other
concerns (# of References) and the number of classes with
at least one reference (# of Referencing Classes) summed
up over all 26 studied versions, as well as the number of
times the class changed (# of Changes) over its history. We

can see that the three decoupled-helpers have a consider-
able number of references in other concerns. They are also
very stable as they only changed one or two times (for each
file one change was actually attributed to change in the
header comment). This example illustrates a case where
JBoss programmers created anextensionto the TRANSAC-
TION concern interface to provide additional functionality
that was not provided by the standard API.

We observed many other similar situations which sup-
ports our hypothesis that programmers can positively take
advantage of the freedom to extend interfaces using design
idioms. Our approach supports verifying and reasoning
about such idioms.

4.4. Classification of Implementation Classes

Our case study was also an opportunity to assess our
classification scheme. We observed that although some im-
plementation classes were heavily referenced, other classes



Table 2. Transaction Propagation Context Implementation T ypes
Class # of References # of Referencing Classes # of Changes

TransactionPropagationContextFactory 526 15 2
TransactionPropagationContextImporter 332 10 1
TransactionPropagationContextUtil 171 17 2

Figure 7. Concern Interface Extension Idiom

were infrequently or never referenced. The data in Ta-
ble 1 supports these observations: only a small number of
implementors are referenced in comparison to decoupled-
helpers. For instance, we recorded that on 5 July 2002
(version 3 July 2002 in Table 1) a reference from the
classorg.jboss.jsm.asf.StdServerSession to the
constructor of the implementororg.jboss.tm.XidImpl
was replaced by the use of a factory interface decoupled
from the implementation.

The last two major columns of Table 1 provide addi-
tional information on the impact of changed implementa-
tion classes. The fourth major column (Ref. to Changed)
contains the number of classes in the rest of JBoss that ref-
erenced a TRANSACTION class for which we had recorded
a change to a public member (see Section 4.2). The fifth
major column (Changed Ref.) contains the number of
classes in the rest of the system that also changed as part
of the same change set because of the change to a public
member of the TRANSACTION class.

For example, for 3 August 2005, six classes referred to
an implementor that changed. Out of these references, only
one reference was modified at the same time. In that case
it was the methodgetTimeLeftBeforeTimeout() of
org.jboss.tm.TransactionImpl that was modified to
throw aRollbackException. The classorg.jboss.-
tm.iiop.OTSSerant had to be modified to handle the
RollbackException.

The numbers of changed external classes (major column
Changed Ref.) show that there are more cases in which

a change in an implementor is associated with a change
in the rest of the system. This observation is interesting
because there are fewer references to implementors than to
coupled-helpers and decoupled-helpers. It could suggest
that implementors change more often than helpers.

We thus decided to investigate whether there was a cor-
relation between the change frequency of a class and its
category. We made the assumption that a class changing
more frequently has a higher probability to create evolution
problems with classes that refers to it. If we can determine
that decoupled-helpers are more stable than implementors
we could infer that a reference to a decoupled-helpers is
safer from an evolution perspective. Thus, our classifica-
tion could be useful to determine if a particular class should
be part of the concern’s interface or implementation.

We compiled the number of revisions on the main
branch of the JBoss repository for each class of TRANSAC-
TION excluding the first revision (i.e., when the class was
added) and the last revision (i.e., if the class was removed).
Files that existed less than one day were not considered.
For each class we normalized the number of revisions over
the number of days it existed in the repository. The cat-
egory of each class (i.e., implementor, coupled-helper, or
decoupled-helper) was identified from the last revision of
that file in the repository. Table 3 shows the average of
revisions per day for each category. A statistical analysis
of variance (ANOVA) revealed that there was a significant
difference between the change rate of files in different cat-
egories (p=0.0018).10 This means that if our hypothesis
holds for other systems and concerns as it does for JBoss
TRANSACTION, programmers can benefit from knowing
that they can more safely refer todecoupled-helpersbe-
cause they tend to be more stable.

Table 3. Revision Rate Per Category
Category Revisions/Day

Implementors 0.02110
Coupled-Helpers 0.01521
Decoupled-Helpers 0.00517

10In other words the probability of this phenomenon being observed by
chance is estimated to be 0.0018. Differences are usually considered to be
significant with p< 0.01.



4.5. Discussion

Our study of the JBoss system documents a concrete
case where flexibility for a concern’s interface is needed.
We observed that in the case of the TRANSACTION con-
cern, JBoss programmers had to refer to a number of im-
plementation classes from the rest of the system. This ob-
servation provides evidence in support of our hypothesis
that it can be necessary and desirable to extend a concern’s
interface, and motivates the need for a tool to check and
enforce extended concern interfaces.

Since our investigation focused on a single concern,
we cannot draw any conclusions about the frequency with
which it might be necessary to extend the interface of con-
cerns. However, our approach provides value even in the
case where developers respect an interface, as it can be used
to restrict all accesses to implementation classes.

As can be expected, our quantitative study of the classi-
fication scheme is subject to a number of nuisance factors.
First, although we only classified each type once using the
last revision of the corresponding file, it is possible that the
category changed during the system’s history. Second, the
assumptions required for an ANOVA test (independence
of observations, normal populations, and homogeneity of
variance) may not perfectly hold as our sample is a rela-
tively small set of files taken from the same package. Al-
though such factors can have a minor impact on the values
reported and the strength of the statistical test, the observed
phenomenon is clear enough that we can reasonably expect
that the overall observation will hold. Additional inves-
tigation should help determine if the observed difference
between the rate of change of different categories of imple-
mentation classes generalizes over multiple concerns and
systems.

5. Related Work

Classpath Access Rules. Eclipse 3.1 supports the defini-
tion of access ruleson a project’s classpath entries [8]. Ac-
cess rules restrict the access to specified packages or types
of a particular project’s dependencies. Access rules could
be used in some cases to have the same restrictive effects as
JMantlet. However, access rules do not support the speci-
fication of a high-level model of concerns that can help the
programmer reason about the concerns of a system. Fur-
thermore, access rules cannot be used to restrict access to
classes of a same project. Thus, each concern would have
to be implemented as a separate project, an impractical lim-
itation.

Concern Modeling. Many tools such as FEAT [14],
ConcernMapper [15], CME [6], and the IntensiVE envi-
ronment [10], allow users to create views of structurally-

related elements that define a mapping between a high-level
concern and source code. They are different from JMant-
let in that they typically allow modeling of concerns at a
finer level of granularity (e.g., methods, fields), but do not
enforce or verify interactions between a concern and the
rest of the program. The exception is the IntensiVE envi-
ronment which supports the definition of relations between
views that can be checked for consistency. However, the
goal and mechanism of the two approaches differ as Inten-
siVE can verify more generic and fine-grained structural
properties between views while JMantlet specifically veri-
fies information hiding between an entire source base and a
concern. JMantlet also automatically detects predefined re-
lations between implementation and interface classes from
which it generates a classification.

Architectural Description. A lot of work has been done
in recent years on the description and verification of soft-
ware architectures [1, 9, 11, 12]. A large portion of
that work focuses onarchitecture description languages
(ADLs), which allow the description and verification of
software architectures [9]. ArchJava [1] is a recent instance
of an ADL for the Java programming language (i.e., an ex-
tension to Java) which supports the definition of the archi-
tecture of a software system, and guarantees the commu-
nication integrity between the architecture and its imple-
mentation at run-time. ArchJava and other ADLs explore
a set of tradeoffs that is different from JMantlet. For in-
stance, supporting ArchJava’s finer-grained model requires
additional syntax, a different compiler, and possible run-
time performance penalties. In contrast, JMantlet’s form of
checking is simpler, but can be seen as less intrusive since it
is only an extension to the development environment which
does not interfere with the Java source code or binaries.

Other tools such as software reflexion models [12] and
the virtual software classifications [11] are closer to our ap-
proach, wherein a separate high-level model is mapped to
source code and used to verify properties of the model in
the source code. However, the tools above describe and en-
force the concerns of a system’s architecture and the com-
munication between those concerns, while our approach
provides a way to control the interface to a service (con-
cern) that can differ based on the context in which the ser-
vice is used.

Reverse Engineering Tools. There is a wide range of re-
verse engineering tools such as SA4J [7] and JDepends [2]
which are useful to analyze the dependencies between
classes and packages of a program. These tools can help
the programmer create a high-level model of a system that
can be used to inspect the dependencies between the con-
cerns of the model. JMantlet differs from reverse engineer-
ing tools as it actively enforces the properties of a concern
model on a source base.



Classification of Classes. Micro patterns [5] and class
blueprint visualization patterns [3] are recent attempts to
use mechanically recognizable patterns to create a classifi-
cation of classes that could be used to assess the evolvabil-
ity of a system. Our classification scheme is similar in that
it is also mechanically recognizable and it could be used
to assess the evolvability of a concern. However, our cate-
gories are broader and they differ in the level of abstraction.
Micro patterns and visual patterns are mainly recognized
based on the properties of a class, while our categories are
recognized from the relation between classes (i.e., inheri-
tance, dependencies).

6. Conclusion

We presented an approach to allow developers to explic-
itly specify, manage, and check the implicit interface to a
concern’s implementation. Our approach is supported by
JMantlet, an Eclipse plug-in that uses a simple developer-
specified concern model to automatically classify imple-
mentation classes, detect external references to classes,and
reports disallowed references to a concern’s implementa-
tion.

We reported on a case study providing evidence of the
existence of the practices supported by our approach. Our
case study also documents a case where there is a correla-
tion between the stability of a class and its category. Based
on this evidence, we form the hypothesis that there might
be a generalized relation between the category of an im-
plementation class and its stability in the context of a con-
cern’s implementation. If this hypothesis holds, our cate-
gorization should provide valuable insights to developers
about the potential risk of introducing references to imple-
mentation classes. We conclude that tool-based manage-
ment of concern interfaces is a feasible and practical way
to mitigate problems caused by the evolution of code ac-
cessing or implementing standard interfaces.

Acknowledgments

The authors thank the anonymous reviewers for their
valuable comments. This work was supported by an IBM
Eclipse Innovation Grant.

References

[1] J. Aldrich, C. Chambers, and D. Notkin. ArchJava: Con-
necting software architecture to implementation. InPro-
ceedings of the 24th International Conference on Software
Engineering, pages 187–197, 2002.

[2] M. Clark. JDepend. Clarkware Consulting, Inc., 2006.
http://www.clarkware.com/software/JDepend.html.

[3] S. Ducasse and M. Lanza. The Class Blueprint: Visually
supporting the understanding of classes.IEEE Transactions
on Software Engineering, 31(1):75–90, 2005.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns—Elements of Reusable Object-Oriented Software.
Professional Computing Series. Addison-Wesley Longman,
Inc., 1995.

[5] J. Y. Gil and I. Maman. Micro patterns in Java code. In
Proceedings of the 20th Conference on Object oriented Pro-
gramming, Systems, Languages, and Applications, pages
97–116, 2005.

[6] W. Harrison, H. Ossher, S. Sutton Jr., and P. Tarr. Concern
modeling in the concern manipulation environment. Tech-
nical Report RC23344, IBM Research, 2004.

[7] IBM. Structural Analysis for Java, 2004. http://-
www.alphaworks.ibm.com/tech/sa4j.

[8] R. J. Lorimer. Use Access Rules to Enforce
API Engagement Rules. EclipseZone, Novem-
ber 2005. http://www.eclipsezone.com/forums/-
thread.jspa?messageID=91952212.

[9] N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture descrip-
tion languages.IEEE Transactions on Software Engineer-
ing, 26(1):70–93, 2000.

[10] K. Mens and A. Kellens. Towards a framework for test-
ing structural source-code regularities. InProceedings of
the 21st IEEE International Conference on Software Main-
tenance, pages 679–682, 2005.

[11] K. Mens, R. Wuyts, and T. D’Hondt. Declaratively codify-
ing software architectures using virtual software classifica-
tions. InProceedings of TOOLS-Europe 99, pages 33–45,
1999.

[12] G. C. Murphy, D. Notkin, and K. J. Sullivan. Software re-
flexion models: Bridging the gap between design and im-
plementation.IEEE Transactions on Software Engineering,
27(4), April 2001.

[13] D. L. Parnas. On the criteria to be used in decompos-
ing systems into modules.Communications of the ACM,
15(12):1053–1058, December 1972.

[14] M. P. Robillard and G. C. Murphy. FEAT: a tool for locat-
ing, describing, and analyzing concerns in source code. In
Proceedings of the 25th International Conference on Soft-
ware Engineering, pages 822–823, 2003.

[15] M. P. Robillard and F. Weigand-Warr. ConcernMapper:
Simple view-based separation of scattered concerns. InPro-
ceedings of the Eclipse Technology Exchange at OOPSLA,
2005.

[16] Sun Microsystems, Inc.Java Transaction API (JTA), Ver-
sion 1.0.1, April 1999.

[17] Sun Microsystems, Inc.JavaMailTMAPI Design Specifica-
tion, Version 1.2, September 2000.

[18] A. S. Tanenbaum and M. van Steen.Distributed Systems
Principles and Paradigms. Prentice-Hall, Inc., 2002.


