
Modelling and Simulation (COMP-522A), Project Report.

Multi Paradigm Modelling and Simulation for

Engineering Change Management (ECM), using

IDEF0, IDEF3, State Transition(ST) Petri Nets and

Colored Petri Nets (CPN)

December , 2005

Imran Haider Malik, Imran Majid

imran.h.malik@gmail.com, majidimran@gmail.com

McGill University,

Montreal, Quebec, H3A 2K6, Canada

Dedicated to

our parents ..!

Acknowledgements

The motivation, help and insight to certain critical issues provided by Prof. Hans Vangheluwe

(Instructor of the course COMP-522A), is remarkable. We are also thankful to the other

students in our class for making the environment of learning in class more healthy with their

presence. Last but not the least we acknowledge the help of Muhammad Ali Elhani (Student

at Ecole Technologie Superiore (ETS), Montreal, Canada), in providing us the IDEF0 model

of New Part Planning Process at an aerospace manufacturing company.

Abstract

Process planning in manufacturing environment is challenging since its iterative, due to

engineering changes (ECs). In order to track the impact of engineering changes the modelling

and simulation of information flow process with regard to New Part Planning (N.P.P), is

required to be done at different level of abstraction, using different formalisms. This is

necessary since the logic of impact trajectory may be seen in one of the lower most levels

of abstraction, while the effect of them can be put into interpretable result in another view,

with higher level of abstraction. This is a typical situation when the part dimensions are

changed by the Engineering Design Department for instance, which effect the process plan

with regard to machines chosen to manufacture the part and the time they are booked for

those operations. However, the management of the organization might not be interested in

the change in dimensions of the part or sub assembly or assembly; they might be interested

in the impact the change has in terms of capital to be invested and the departments that

are effected.

For this purpose we have transformed the truncated IDEF0 model of New Part Planning

(N.P.P) process into first IDEF3, then directly to State Transition Petri Nets and Colored

Petri Nets.

1 Introduction

1.1 Problem Statement

There exists an IDEF01 (Elhani et al., 2005) model of the information flow process, of New

Part Planning (N.P.P), in the software AI0WIN7(for IDEF0)2. For the initial study purposes

and to obtain the feel of different modelling techniques, we have selected one activity A11

(forms First Level of Hierarchy, FLH) and its two decompositions (The IDEF0 of these

activity and their sub activities is included in the Appendix A). The first decomposition of

A11 (Second Level of Hierarchy, SLH), contain six activities, out of which five of them have

further decomposition, which leaves A116 without any further decomposition. The second

decomposition of five activities namely A111, A112, A113, A114 and A115 in SLH, contain

3, 3, 3, 5 and 3 activities in them respectively (All five decompositions are displayed in

Appendix A). The activities are selected in a way that they involve all sorts of relationships

among the flow e.g. join and split.

It is desired to translate the reduced model into a formalism containing dynamics behavior

since IDEF0 is a formalism with static behavior which signifies only the logical sequence of

operations. The need is to elaborate on the dynamic behavior of the system and explain

some characteristics which occur in real world, with regard to engineering changes.

1.2 Proposed Solutions

In order to bring the process level view of the reduced IDEF0 model, we will use IDEF3

formalism in which time information is additionally required other than the information

contained in IDEF0 (IDEF3 process modelling formalism is detailed in Mayer et al., (1995)).

However, the approach of Kim, C-H et al (2001) will be used to transform the IDEF0 to

1Draft Federal Information Processing Standards Publication 183, 1993 December 21, Announcing the

Standard for INTEGRATION DEFINITION FOR FUNCTION MODELLING (IDEF0)., Knowledge Based

Systems Inc. (KBSI), Texas. http://www.kbsi.com/
2Product of Knowledge Based Systems Inc. (KBSI), Texas. http://www.kbsi.com/

1

IDEF3, which transforms the IDEF0 to IDEF3 based on the assumption that the resources

and mechanisms in IDEF0 are time independent and thus can be neglected while transfor-

mation to IDEF3. IDEF3 simulation will be done using ProSim3 if possible on its evaluation

version. In case the simulation is not possible, we will translate the IDEF3 process model

to State Transition Petri nets and analyze the dead locks in the system. Another proposed

approach is that the IDEF3 be transformed to Colored Petri Nets (CPN), the syntax and

semantics of which are described by Jensen, K. (1996), from where we will have a compact

and more comprehensive view of the actual reduced IDEF0 model.

2 IDEF0 model of N.P.P

2.1 Basic Syntax and Semantics of IDEF0 and IDEF3

The syntax of IDEF0 involves a box which represents a function Fig. 1. It is characterized

by a square box with a name representing the function. There are ICOM (Input, Control,

Output and Mechanism) links used to describe the relation among the functions. Inputs

always are represented by the right headed arrow entering from the left side of the function

block. Outputs are leaving with right headed arrow from right side of the function block.

Controls are the vertical arrows entering from top of the box. Finally the mechanisms are

the vertical arrows facing upwards from lower side of the box.

The semantics of the syntax described above is that when ever the inputs are available and

control conditions are satisfied, with the resources (represented by the mechanism) available

to the function, the outputs will be generated.

Similar to IDEF0, since IDEF3 is a process modelling formalism, the processes are repre-

sented by the Unit Of Behaviors (UOB) Fig. 1. These UOBs have a box with two small

boxes at their lower end. In the upper big box the name of the process is mentioned. In the

lower two boxes the number of the UOB with regard to its hierarchy is represented. These

UOBs are linked to each other via links and junctions. UOBs cannot be directly linked to

3Product of Knowledge Based Systems Inc. (KBSI), Texas. http://www.kbsi.com/

2

each other via a single link, there has to be a junction in between describing the logic of

start of the process downstream. There are two types of links one is single headed and the

other is double headed. The single headed arrow represent that once the process(or junction

has satisfied the condition) at its tail is finished, the process or junction at its head will ini-

tiate itself without physical transfer of an object. The double headed arrow represent that

once the process(or junction has satisfied the condition) at its tail is finished, the process or

junction at its head will initiate itself with physical transfer of an object. The logical junc-

tions are of three types OR, AND and XOR, with the option of either being synchronous

or asynchronous. Synchronous and Asynchronous property of junction is represented by the

vertical line on the right side of junction box being there or not. The one in the Fig. 1 is

synchronous AND which means that when all the inputs are satisfied at one time, only then

all the outputs will be generated at the same time and vice versa.

The semantics of IDEF3 syntax described above is that when ever the conditions on the in-

put of junction is satisfied the output of a junction is generated and the subsequent processes

start there activity. Once the time of the process (which is also part of syntax of IDEF3

process modelling) is finished it will either trigger the junction down streams or trigger that

junction by sending and object to it.

3

Figure 1: Components of Syntax in IDEF0 and IDEF3.

4

3 Transformation of Truncated IDEF0 to IDEF3

This transformation is proposed since we are required to introduce some functional dynamics

in the system modelled by IDEF0, in order to realize the change trajectory (equivalent to

state change trajectory). The comparison of the IDEF0 and IDEF3 is summarized in the

Critique section of the report.

3.1 Manual Transformation of IDEF0 to IDEF3

The IDEF0 is first Manually Transformed to IDEF3 using the transformation strategy and

assumptions described in Kim et al. (2001). These assumptions namely are

• all the Mechanisms (resources) are available to functions or now in IDEF3 case UOBs,

at all times, and thus can be removed from the model,

• all the Control(conditions) on the functions are satisfied and thus can be removed from

the model.

Obviously these assumptions are a little too naive. However for the purpose of study in this

project of multi paradigm modelling for ECM we go along with it.

The transformation rules are reproduced here for a quick reference

• remove all the Mechanisms,

• remove all the Controls,

• replace functions by the UOBs and assign the same name to UOBs as the function

name along with the activity number,

• The join and split of the links are transformed by the table used in Kim et al. (2001),

and reproduced in Fig. 3.

It is assumed further here that no Object flow is there between the function, thereby resulting

in the links used to join UOBs to be single headed arrows. All the split and join junctions

5

Figure 2: Transformation of join and split operations.

are assumed to have synchronous AND logic. The transformed IDEF3 model of truncated

IDEF0 model (A11 activity, with 3 level of hierarchy), is drawn using MSVisio for better

presentation. Since AI0WIN7 allow transformation of IDEF0 model in it to be exported in

MSVisio, couple of activity diagrams are directly used from the exported files. The resultant

diagram is displayed in Fig. 3.

3.2 Semi Automated Transformation of IDEF0 to IDEF3

As AI0WIN7 and ProSim(for IDEF3) are the both the product of KBSI, the IDEF0 functions

along with their hierarchy can be exported from AI0WIN7 to a *.txt file which then can

be imported in ProSim. When this imported model is accessed in ProSim, the second level

of Hierarchy (SLH) appears to six UOBS without any link between them. Since only the

evaluation version was at our disposal and we were not provided with the full functionality of

adding the links and junctions only some of UOBs of SLH are connected with each other via

links and junctions, using the same assumptions enumerated in the last section. However,

6

Figure 3: Flattened IDEF3 of Truncated IDEF0’s A11 activity.

7

Figure 4: SLH in ProSim

to fulfill our curiosity of using the precedence links with object transfer, we used the double

headed arrow and in its property added the object available in the UOB at its tail (either

which was from an input, output, mechanism and/or control of the function represented by

the UOB). Since the links and junctions are not automatically configured by ProSim, the

transformation is named as Semi-Automated. Fig. 4 display the view of SLH in ProSim,

evaluation version.

8

Figure 5: Basic Components of State Transition Petri Net.

4 IDEF0 to State Transition (ST) Petri Nets

4.1 Basic Syntax and Semantics of State Transition Petri Nets.

The ST Petri nets (Cassandras,1989) Fig. 5 consists of four different objects for their repre-

sentation, which are namely places, transitions, tokens and arcs. Places model the storage

place, transition model an action or event that happens when the transition fire, tokens

model similar objects flowing in the system and arcs model links between the places to/from

transitions.

The arcs are characterized by their weight which is an integer number. The arcs are used to

join the places to transitions and transitions to places. Places are characterized with respect

to the transitions they are connected, as either input or output places. No two places are

connected to each other directly.

When the input places have sufficient number of tokens as the arcs joining them to the

transition, the transition can be fired and tokens equal to the weight of arcs corresponding

to the output places will be added to them. Initially a Petri net may have certain number of

tokens placed in some places. There is a characteristic of Petri net called marking, which is

a n dimensional vector, where n is number of places in the Petri net. Whenever a transition

fires the marking of a Petri net is updated.

9

4.2 IDEF0 XML Structure

AI0WIN7 stores IDEF0 structure in XML format. This XML structure not only maintains

different connections between Activities but also stores the hierarchy of the system. Our first

aim was to be able to interpret and flatten this model. The involvement of the hierarchy

makes the model quite intricate and difficult to interpret. Section. 4.2.1 and 4.2.2 represent

the structure of IDEF0 in this XML format. State Transition Petri Nets (Cassandras, 1989).

4.2.1 Activity and Concept

Following code in verbatim represents the activity and concept pool structure in the XML

model of IDEF0.

<?xml version="1.0"?> <idef0>

<activity_pool>

<activity id="25">

<name> Developper methode de fabrication piece moteur </name>

</activity>

<activity id="28">

<name> elaborer methode de fabrication XPart </name>

</activity>

. . .

<activity id="2200">

<name> Recevoir M.O.S/F.I.R (Electr. + papier) </name>

</activity>

</activity_pool>

<concept_pool>

<concept id="1867">

<name> Livrables P.P Team (Indirects a la fabrication) </name>

</concept>

<concept id="1868">

10

<name> P.S.S (B.O.M) </name>

</concept>

. . .

<concept id="3258">

<name> Nouvelle demande de M.O.S/F.I.R (Dossier papier) </name>

</concept>

</concept_pool>

In IDEF0, an activity represents the processing block or ICOM. Every activity has a unique id

and a name. AI0WIN7 records all the activities in an activity pool. A concept in IDEF0 represents

an input (I), output (O), control (C) or mechanism (M). These are the connections between the

activities. In AI0WIN7 every concept is also assigned a unique id and is represented on the model

with a name.

4.2.2 Diagram

The diagram structure in IDEF0 is as follows.

<diagram id="78" parent_activity_use="49">

<name> A112: Preparer C.P.M Plan (Diagramme de Gantt du projet) </name>

<revision_no> 0 </revision_no>

<review_stat> Working </review_stat>

<activity_use id="80" pool_id="79">

<placement_info x_coord="1" y_coord="1"/>

<attachment file_link=" "/>

</activity_use>

<activity_use id="82" pool_id="81">

<placement_info x_coord="2" y_coord="2"/>

<attachment file_link=" "/>

</activity_use>

11

<activity_use id="84" pool_id="83">

<placement_info x_coord="3" y_coord="3"/>

<attachment file_link=" "/>

</activity_use>

<concept_use id="2239" pool_id="1923" breakdown_id="0">

<attached_activity icom_type="Control" attached_activity_use_id="80"/>

<attached_activity icom_type="Control" attached_activity_use_id="82"/>

</concept_use>

<concept_use id="2256" pool_id="1937" breakdown_id="0">

<attached_activity icom_type="Control" attached_activity_use_id="80"/>

<attached_activity icom_type="Control" attached_activity_use_id="82"/>

</concept_use>

<concept_use id="2262" pool_id="2056" breakdown_id="0">

<attached_activity icom_type="Control" attached_activity_use_id="80"/>

<attached_activity icom_type="Control" attached_activity_use_id="82"/>

</concept_use>

<concept_use id="2468" pool_id="1872" breakdown_id="2574">

<attached_activity icom_type="Output" attached_activity_use_id="84"/>

</concept_use>

<concept_use id="2321" pool_id="1868" breakdown_id="0">

<attached_activity icom_type="Control" attached_activity_use_id="80"/>

</concept_use>

<concept_use id="2497" pool_id="1936" breakdown_id="2572">

<attached_activity icom_type="Control" attached_activity_use_id="80"/>

<attached_activity icom_type="Control" attached_activity_use_id="82"/>

</concept_use>

<concept_use id="2348" pool_id="2033" breakdown_id="0">

<attached_activity icom_type="Mechanism" attached_activity_use_id="84"/>

<attached_activity icom_type="Mechanism" attached_activity_use_id="82"/>

</concept_use>

12

<concept_use id="2439" pool_id="2438" breakdown_id="2574">

<attached_activity icom_type="Output" attached_activity_use_id="80"/>

<attached_activity icom_type="Input" attached_activity_use_id="82"/>

</concept_use>

<concept_use id="2441" pool_id="2440" breakdown_id="0">

<attached_activity icom_type="Output" attached_activity_use_id="82"/>

<attached_activity icom_type="Input" attached_activity_use_id="84"/>

</concept_use>

<breakdown id="2572" parent_concept_use_id="2497" branch_type="Split"

bundle_type="Type-Of"/>

<breakdown id="2574" parent_concept_use_id="2468" branch_type="Join"

bundle_type="Type-Of"/>

</diagram>

In IDEF0 the interconnections between activities and their hierarchy is maintained in terms of

diagram modules. A diagram is linked with a particular activity and represents how that activity

is broken down into further lower-level activities. Every diagram has a unique id and has a property

parent_activity_use. The hierarchy is maintained through

parent_activity_use attribute. If it is empty then it represents that this diagram is the top most

diagram in the hierarchy; otherwise it points to the activity it elaborates. In the XML diagram

structure above, we have a diagram with id=78 and parent_activity_use=49. This means that

whenever an activity is used in some figure with id=49 then in fact that activity can be elaborated

further with this diagram. Every diagram has a name which is shown in AI0WIN7. Based on the

name field it can be inferred that the generated code in XML above represents activity A112.

Every diagram elicits the lower-level activities that are taking part in this diagram. These activities

constitute the breakdown of the higher-level parental activity.

<activity_use id="80" pool_id="79">

<placement_info x_coord="1" y_coord="1"/>

13

<attachment file_link=" "/>

</activity_use>

The above XML snippet represents that an activity that is stored in activity pool with id=79

is being used in the above diagram. Within the scope of this diagram this particular activity is

referenced by its activity_use id=80.

Diagram represents the connections (ICOM) between the lower-level activities by the field concept_use.

This represents the concept from the concept pool that is being used in this diagram.

<concept_use id="2439" pool_id="2438" breakdown_id="2574">

<attached_activity icom_type="Output" attached_activity_use_id="80"/>

<attached_activity icom_type="Input" attached_activity_use_id="82"/>

</concept_use>

The above XML snippet represents that a concept (which is stored in concept pool with id of 2438)

is being used in this diagram. This concept is attached to two activities used in this diagram.

It connects to the first activity (an activity which is referred with id=80 in this diagram) as an

“Output” and connects to the second activity (an activity which is referred with id=82 in this

diagram) as an “Input”.

4.2.3 Join and Split

A concept can be split and connected to several activities with different names. Similarly several

concepts can merge or join to form some other concept. This is accommodated in IDEF0 through

the breakdown. Field in concept_use A concept that is taking part in some split or join has some

value in the breakdown_id; otherwise it is empty.

<breakdownid="2572"parent_concept_use_id="2497"branch_type="Split"

bundle_type="Type-Of"/>

14

<breakdown id="2574"parent_concept_use_id="2468"branch_type="Join"

bundle_type="Type-Of"/>

The above XML snippet represents that all the concepts that use a breakdown_id of 2572 are all

’Split” from the concept 2497 (given in parent_concept_use_id). Similarly all the concepts using

the breakdown_id of 2574 are all joining into the concept of 2468.

4.3 Object Oriented (OO) Representation of IDEF0 Structure

For transforming IDEF0 in State Transition Petri Nets and Colored Petri Nets, we first have to read

the XML format of IDEF0 explained in section. 4.2 and parse it into an Object-Oriented model.

Fig. 6 represents an overview of the Class diagram used to build the object-oriented model. In the

class diagram, the class Arc represents the Concept in IDEF0 while Activity and Diagram of IDEF0

are represented by their corresponding classes. The class diagram represents that every Activity

is expanded in 0 or 1 diagram. If the activity is further broken down into sub activities then its

expanded diagram is non-empty otherwise it is empty. Every activity has 4 associations with the

class ArcList corresponding to Inputs, Controls, Outputs and Mechanisms of that activity. Every

diagram has a list of activities and arcs that take part in that diagram. As explained in Section 1.3,

a concept can be split from some other concept or it can be joining into some other concept. To

represent this relationship we have mergesInto and splitsFrom associations with class Arc. We

use org.xml.sax API of Java to parse the XML model of IDEF0 and construct the corresponding

object-oriented model in memory.

4.4 Mapping IDEF0 to ST Petri Nets

We have mapped the flattened IDEF0 model into ST Petri Nets by defining some basic transforma-

tions and devising the connection mechanism to connect these basic modules. As we are assuming

that the resources are continuously available and the control conditions are always satisfied so we

concentrate on the Input, Output and the Activities of IDEF0. These transformations are given in

Fig.7. An input is modelled as a combination of Place and Transition such that we have continuous

availability of Input. An Activity without any inputs is modelled similarly. Any Activity that has

15

Figure 6: Class Diagram of IDEF0 model

some inputs is modelled as a combination of input-transition, a place and an output-transition.

An output is represented as a place that receives input through its input-transition. In ST Petri

Nets we cannot have edges from transitions to transitions therefore we need connecting places to

connect these basic modules. These connecting places are represented in Fig. 8. In the current

approach we have to produce a connecting place for every connection between activities, input

and outputs. There are several heuristics that can be used to reduce the number of connecting

places. For instance if we connect two Activities serially then the connecting place can be removed

by merging the output-transition of first activity with the input-transition of the second activity.

Currently, due to time constraints, we have not been able to implement such heuristics but these

can be considered a part of the future work.

4.5 Generic XML representation of ST Petri Nets

We are required to convert IDEF0 into State Transition Petri Nets (ST Petri Nets) and analyze

its behavior. As we are using ATOM34 to analyze ST Petri Nets we were initially converting the

4Multi-Formalism modelling and Simulation Package, Product of Modelling, Simulation and Design Lab.

(MSDL), Department of Computer Science, McGill University, Montreal, Canada.

16

Figure 7: Basic transformation from IDEF0 to ST Petri Nets

17

Figure 8: Representation of connecting places.

object-oriented model of IDEF0 directly into ATOM3 as represented in Fig. 9. Mapping one format

into another format is generally a difficult process and it can be efficiently managed by introducing

an intermediary format. To achieve this purpose we have devised an XML format for representing

State Transition Petri Nets in XML format. We convert our object-oriented model into this XML

format and from this XML format we generate the target ATOM3 code. This process is displayed

in Fig. 10. Even though we are performing two transformations instead of one in the previous case,

this is a much more generalized solution. It also facilitates any other third party to write ST Petri

Nets in our devised XML format and out transformer can build the corresponding ATOM3 related

Python code for it too.

4.5.1 XML representation of ST Petri Nets

The XML DTD used to represent the ST Petri Nets in XML format is given as follows.

<!ELEMENT PetriNet (place*)>

<!ELEMENT place (input, output)>

18

Figure 9: Initial transformation Process

Figure 10: Final transformation Process.

19

<!ATTLIST place

name CDATA #REQUIRED

tokens CDATA #REQUIRED>

<!ELEMENT input (edge*)>

<!ELEMENT output (edge*)>

<!ELEMENT edge()>

<!ATTLIST edge

name CDATA #REQUIRED

transition CDATA #REQUIRED

weight CDATA #REQUIRED>

We have defined a top-level element PetriNet that consists of several Place elements. Every Place

element has attributes name and tokens. A Place also contains an input element and an output

element. Input and output both consist of zero or many edge elements. An edge has a name

attribute, a transition attribute and a weight attribute.

Using the above DTD the ST Petri Net given in Fig. 11 can be represented in XML format.

20

<?xml version="1.0"?>

<PetriNet>

<place name="P1" tokens="1">

<input>

</input>

<output>

<edge name="e1" transition="T1" weight="1"></edge>

</output>

</place>

<place name="P2" tokens="1">

<input>

<edge name="e5" transition="T2" weight="1"></edge>

</input>

<output>

<edge name="e2" transition="T2" weight="1"></edge>

</output>

</place>

<place name="P3" tokens="0">

<input>

<edge name="e3" transition="T1" weight="2"></edge>

</input>

<output>

<edge name="e4" transition="T2" weight="1"></edge>

</output>

</place>

</PetriNet>

Figure 11: Simple Petri Net with the XML generated code.

21

4.6 Analysis of ST Petri Nets

We have written a complete transformer that maps IDEF0 into corresponding ST Petri Nets. This

transformer is available as an executable jar file. It takes an IDEF0 model in its XML format and

produces a ST Petri Net both in a generic XML format and also in a Python model that can be

viewed in ATOM3. It can be executed by the following command

java -jar idef0transformer.jar filename.xml

The above command will produce filename_MDL.py and Genericfilename.xml at the same loca-

tion. We have also written a generic transformer that takes ST Petri Nets in Generic XML form

(described in section. 4.5) and produces the corresponding name_MDL.py file to represent the ST

Petri Nets in ATOM3. This transformer is written in Java and is available as a jar file. It can be

invoked by the following instruction

java -jar transformer.jar -st filename.xml

The above command generates filename_MDL.py file at the same location. ATOM3 has an exten-

sive support to analyze ST Petri nets. We have analyzed the generated ST Petri Nets for A111

activity (Fig. 12)of IDEF0 by creating their coverability tree and doing conservation analysis of

A111 in Fig. 13 and Fig. 14 respectively.

22

Figure 12: A ST Petri Net for IDEF0 Activity A111.

23

Figure 13: Coverability tree for A111.

24

Figure 14: Conservation Analysis of ST Petri Net for A111.

25

5 Transformation of IDEF0 to CPN

5.1 Basic Syntax and Semantics of State Transition Petri Nets.

CPN (Jensen, 1996) combines the strength of ST Petri Nets with the strength of programming

languages. Like Petri Nets it provides the primitives for describing synchronization of concurrent

processes and similar to programming languages it provides the primitive for definition of data

types and manipulation of these data types. Similar to ST Petri Net, CPN consists of places and

transitions.

5.1.1 Place

Each place has an associated type that determines the kind of data that can be placed there. There

are four standard types of data int, boolean, string and event e. More complex data types can be

defined by making tuples of these basic types. Each data type is also referred as the color-set,

and the value of the tokens as the colors.

Each place can contain more than one token. All these tokens should be of the same type as that

of the place. The state of a CPN is called its marking. It consists of the number of tokens at each

place in the CPN. The tokens present at a place are called its marking and a place can be defined

to have some initial tokens, called initial marking.

In Fig. 15 the place I2058 has type INT and initial marking of 1‘1. It means it initially had one

token of type INT and value 1. The number of tokens present at a place is shown in a small green

circle next to the place. If a place contains no token then the green circle disappears.

5.1.2 Transition

Actions in CPN are modelled as Transitions. Unlike ST Petri Nets, the transitions in CPN are

not just enabled by the availability of tokens in the input places but it can also be configured on

certain criteria. A Boolean expression can be added to a transition, called the guard. It specifies

that this transition is enabled only when this guard evaluates to true.

26

5.1.3 Arc

Arcs are the means of connection between different components of the CPN. An arc joins a place

and a transition. An arc has its arc expression that contains free variables. These free variables

are bound with the values of the tokens at the place when a transition occurs. Tokens are passed

from places to transitions via these free variables.

In Fig. 15 the place I2058 is connected to transition I2058O by an arc having expression ’i’. In this

expression ’i’ represents a free variable and it will be binded with the token from place I2058O in

case the transition I2058O is enabled.

5.2 IDEF0 in CPN

In ST Petri Nets, we cannot distinguish between different tokens at a Place and cannot track the

movement of a particular artifact through the workflow. As Petri Net models just the flow of events

there is no mechanism to handle the timing information. Above all ST Petri Net is a flat structure

and we can not model hierarchy in it. Colored Petri Nets (CPN) address all the above-mentioned

issues. We have analyzed CPN to determine its suitability to model the workflow of IDEF0. CPN

is a whole new modelling structure and it can be visually analyzed through the CPN tool5. Due

to time constraints we were not able to explore and exploit all the features of CPN but an initial

study identifies that we can

• Produce different classes of tokens

• Identify an individual token so we can analyze different tokens of the same class at various

stages of the workflow

• Track the flow of a particular token by assigning a timing attribute to it

• Assign timing constraints to the Transitions which are enabled not only by the availability

of the tokens at the input places but also takes into account the timing constraint when that

transition can be fired

• Model hierarchy

5Department of Computer Science, University of Aarhus, http://www.daimi.aau.dk/ kjensen

27

Figure 15: A sample generated CPN.

Our complete transformer also maps IDEF0 into corresponding CPN. Given an IDEF0 model in

XML format it produces a CPN model that can be viewed and analyzed in CPN tool. It can be

executed by the following command

java -jar idef0transformer.jar filename.xml

The above command will produce filename.cpn at the same location. Similar to the ST Petri Nets,

we have also improved the functionality of the transformer to generate a simple Colored Petri Net

from the generic XML file. Following instruction produces a filename.cpn file.

A simple generated CPN is shown in Fig. 15.

6 Critique

In the table in Fig. 16, all the four formalisms are compared for what kind of views they provide,

what system entities they contain, their main modelling constructs, semantic domain and difference

in their modelling capabilities. The view points, Types of system entities and main modelling

construct, comparisons for the IDEF0, IDEF3 and Petri net are obtained from the Kim et al.

(2001). Last two rows and last one column in the table are the result of the analysis in the project.

The analysis on IDEF3 model in ProSim is not performed since the evaluation version was provided.

However, the exercise of transformation from the IDEF0 was beneficial in terms of gaining a more

detailed view of object or decision flow. This is so since all the UOBs are linked via a logical junction.

State Transition Petri Net model of the truncated IDEF0 can be analyzed by making coverability

28

Figure 16: Comparison of IDEF0, IDEF3, State Transition Petri Net and Colored Petri Net.

29

and reachability trees. Certain markings (combination of tokens in all the places of ST Petri net)

which may be pointed out by the system analyst of the company, to be critical. These critical

markings may be be cause of forming deadlocks in the system. When ever an EC (Engineering

Change) is evoked, the first job of system analyst and the Program Manager (within the Change

Management and Configuration Management functions of a manufacturing organization), is to

decide if the change can be executed within the current available resources (both Human and

Machine), time left in deadline to deliver the product to client and capital allowed to manufacture

without taking the project into debt. The analysis of current available resources and simulation of

what if analysis can be performed by the ST Petri nets, by defining the capacity constraints at the

bounded resource places (equivalent to functions or UOBs in IDEF0 or IDEF3 respectively).

Dependance of decision of executing EC on time resource available can be answered in the CPN

model, by either defining time delay on the transitions (which are fired once the input condition

of the transition are satisfied and subsequently the time delay is passed after it) or defining the

time to stay on each of the colored token. The later can signify the different service times required

by different objects, in case of EC requiring a new documentation to be distributed among its

concerned departments (modelled as places (ST Petri Nets or CPN), functions (IDEF0) or UOBs

(IDEF3) along with their hierarchy in CPN, IDEF0 and IDEF3).

Cost analysis can both be performed either by CPN or IDEF3. In CPN a cost variable can be

assigned to each place or transition which can be incremented conditionally for tokens of different

colors. However, IDEF3 explicitly provide the feature of associating cost data to each each UOB

process.

7 Future Work

We recommend following four directions in future work.

30

7.1 Completion of IDEF3 in ProSim on the imported model of

IDEF0

IDEF3 model can be completed in ProSim by collection of real process data from the manufacturing

organization. This will help us performing the EC impact analysis (both time and cost) for the

N.P.P (New Part Planning) process.

7.2 Complete model transformation in ST Petri Nets from IDEF0

The complete IDEF0 model transformation to ST Petri Net will help in simulation of Model for a

given EC (which can be input to model as initial marking of Petri net) and analyzing the N.P.P

process for identification of deadlock states, critical states (may be a cost defective state) and

conservation analysis which can in turn provide the places with the capacity constraints on them.

Another use of this can be to identify the nature of task execution (whether its executed once,

twice, finite times or infinitely many time) by liveness analysis of the transitions in the ST Petri

net.

7.3 Hierarchy and Time analysis in Colored Petri Nets

Since CPN formalism support both Hierarchy and time analysis (using state space analysis), the

complete IDEF0 transformation to CPN may allow us to retain same structure of the model yet

allowing us to model the dynamic behavior of the N.P.P process for certain EC.

The manufacturing organizations are interested in how they can reconfigure their resources for

concurrent task execution system with different types of objects (in case of aerospace engine manu-

facturer different parts of one engine, or same parts of different engine (even the engine model and

geometry is same they are assigned different number called Effectivity in aerospace manufacturing

terminology))?

Well this question can be answered by first modelling the current manufacturing setup in CPN

(Calling the model Base CPN), then analyze it for given critical set of critical ECs and the per-

formance of system, while making recommendations for different set of tasks to be executed in

concurrency with other tasks on which they might not depend fully. The Base CPN can then

31

be reconfigured on the recommendations resulted from its tests, into a new version (Version 1) of

CPN. All the version can be kept in record for role back if desired. This reconfiguration of model

and generation of new versions of CPN models can go on until a specified performance index of the

system reach its optimum. For validating the configuration of each version of model for set of ECs,

is may be required to transform them back to IDEF0 for conforming with the given structure at

certain level of hierarchy in it (above which the reconfiguration of the manufacturing setup might

be impossible or unfeasible for the company).

7.4 Transformation of completed IDEF3 to Discrete EVent Sys-

tems (DEVs)

An interesting formalism called Discrete EVent Systems (DEVs) introduced by Zeigler et al. (2000),

is yet to be explored for its features useful for ECM analysis. This formalism provides almost all

the distinct features which IDEF0, IDEF3, ST Petri Nets and CPN provide individually. However,

since the formalism is low level of abstraction, still a formalism at higher level of abstraction, like

the IDEF0 may be required for the ECM analysis.

32

References

[Cassandras,1989] Cassandras, C.G., 1989, Discrete Event Systems, Petri Nets and Timed Models.

[Elhani,2005] Elhani, M.A., Rivest, L., 2005. IDEF0 Model of New Part Planning Process, Ecole

Technologie Superiore.

[Jensen,1996] Jensen, K., 1996, An Introduction to the Practical Use of Colored Petri Nets, De-

partment of Computer Science, University of Aarhus,E-mail: kjensen@daimi.aau.dk, WWW:

http://www.daimi.aau.dk/ kjensen

[Kim,2001] Kim, C-H., Yim, D-S., Weston, R. H., 2001, An Integrated use of IDEF0, IDEF3 and

Petri net methods in support of business process modelling. Proceedings of the Institution

of Mechanical Engineers, Part E : Journal of Process Mechanical Engineering, Vol 215, pp

317-330.

[Mayer,1995] Mayer, R.H., Menzel, C.P., Painter, M.K., DeWitte, P.S., Perakath, T.B.B., 1995,“In-

formation Integration for Concurrent Engineering (IICE) IDEF3 Process Description Capture

Method Report”, Knowledge Based Systems Inc. (KBSI), Human Resources Directorate Lo-

gistics Research Division, Incorporated One KBSI Place 1500, University Drive East College

Station, Texas, 77840-2335.

[Vangheluwe,2005] Vangheluwe, H., 2005,“System Specifications”, Course Notes, Course:Modeling

and Simulation (COMP522A), McGill University, Montreal, Canada.

[Vangheluwe,2005] Vangheluwe, H., 2005,“The Discrete Events System Specification (DEVS) for-

malism”, Course Notes, Course: Modeling and Simulation (COMP522A), McGill University,

Montreal, Canada.

[Zeigler,2000] Zeigler, B.P., Praehofer, P., Kim, T.G., 2000. The foundations of modelling and

simulation: Theory of Modelling and Simulation: Integrating Discrete Event and Continuous

Complex Dynamic Systems. Academic Press, second edition, 2000. Chapters 1 - 9, 17, 18.

33

Appendix

A11, First level of Hierarchy

34

35

A11, Second level of Hierarchy

36

A111, Third level of Hierarchy

37

A112, Third level of Hierarchy

38

A113, Third level of Hierarchy

39

A114, Third level of Hierarchy

40

A115, Third level of Hierarchy

41

