COMP 551 – Applied Machine Learning Lecture 2: Linear Regression

Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca)

Slides mostly by: Joelle Pineau

Class web page: www.cs.mcgill.ca/~hvanho2/comp551

Unless otherwise noted, all material posted for this course are copyright of the Instructors, and cannot be reused or reposted without the instructor's written permission.

Supervised learning

- Given a set of <u>training examples</u>: $x_i = \langle x_{i1}, x_{i2}, x_{i3}, ..., x_{in}, y_i \rangle$
 - \mathbf{x}_{ii} is the j^{th} feature of the i^{th} example
 - y_i is the desired **output** (or **target**) for the i^{th} example.
 - X_i denotes the j^{th} feature.
- We want to learn a function f: X₁ × X₂ × ... × Xn → Y
 which maps the input variables onto the output domain.

tumor size	texture	perimeter	 outcome	time
18.02	27.6	117.5	N	31
17.99	10.38	122.8	N	61
20.29	14.34	135.1	R	27

Supervised learning

- Given a dataset X × Y, find a function: f: X → Y such that f(x) is
 a good predictor for the value of y.
- Formally, f is called the <u>hypothesis</u>.

- Output Y can have many types:
 - If $Y = \Re$, this problem is called <u>regression</u>.
 - If Y is a finite discrete set, the problem is called <u>classification</u>.
 - If Y has 2 elements, the problem is called <u>binary classification</u>.

Prediction problems

The problem of predicting <u>tumour recurrence</u> is called:

classification

The problem of predicting the <u>time of recurrence</u> is called:

regression

Treat them as two separate supervised learning problems.

tumor size	texture	perimeter		outcome	time
18.02	27.6	117.5		N	31
17.99	10.38	122.8		N	61
20.29	14.34	135.1		R	27
			·		

Variable types

- Quantitative, often real number measurements.
 - Assumes that similar measurements are similar in nature.
- Qualitative, from a set (categorical, discrete).
 - E.g. {Spam, Not-spam}
- Ordinal, also from a discrete set, without metric relation, but that allows ranking.
 - E.g. {first, second, third}

The i.i.d. assumption

• In supervised learning, the examples x_i in the training set are assumed to be independently and identically distributed.

The i.i.d. assumption

• In supervised learning, the examples x_i in the training set are assumed to be independently and identically distributed.

- Independently: Every x_i is freshly sampled according to some probability distribution D over the data domain X.
- Identically: The distribution D is the same for all examples.

Why?

Empirical risk minimization

For a given function class *F* and training sample *S*,

Define a notion of error (left intentionally vague for now):

 $L_{S}(f)$ = # mistakes made by function f on the sample S

Empirical risk minimization

For a given function class *F* and training sample *S*,

Define a notion of error (left intentionally vague for now):

 $L_{S}(f)$ = # mistakes made by function f on the sample S

Define the Empirical Risk Minimization (ERM):

$$ERM_F(S) = argmin_{fin F} L_S(f)$$

where *argmin* returns the function *f* (or set of functions) that achieves the minimum loss on the training sample.

Easier to minimize the error with i.i.d. assumption.

A regression problem

What <u>hypothesis class</u> should we pick?

Observe	Predict
X	У
0.86	2.49
0.09	0.83
-0.85	-0.25
0.87	3.10
-0.44	0.87
-0.43	0.02
-1.1	-0.12
0.40	1.81
-0.96	-0.83
0.17	0.43

Linear hypothesis

Suppose Y is a <u>linear function</u> of X:

$$f_{\mathbf{W}}(\mathbf{X}) = w_0 + w_1 x_1 + \dots + w_m x_m$$

= $w_0 + \sum_{j=1:m} w_j x_j$

- The w_i are called parameters or weights.
- To simplify notation, we add an attribute $x_0=1$ to the m other attributes (also called **bias term** or **intercept**).

How should we pick the weights?

Least-squares solution method

• The linear regression problem: $f_{\mathbf{w}}(X) = w_0 + \sum_{j=1:m} w_j x_j$ where m = the dimension of observation space, i.e. number of features.

- Goal: Find the best linear model given the data.
- Many different possible evaluation criteria!
- Most common choice is to find the w that minimizes:

$$Err(w) = \sum_{i=1:n} (y_i - w^T x_i)^2$$

(A note on notation: Here w and x are column vectors of size m+1.)

Least-squares solution for $X \in \mathbb{R}^2$

Least-squares solution method

Re-write in matrix notation: f_w (X) = Xw

$$Err(\mathbf{w}) = (Y - X\mathbf{w})^T (Y - X\mathbf{w})$$

where X is the n x m matrix of input data,
Y is the n x 1 vector of output data,
w is the m x 1 vector of weights.

To minimize, take the derivative w.r.t. w:

$$\partial Err(\mathbf{w})/\partial \mathbf{w} = -2 X^T (Y-X\mathbf{w})$$

- You get a system of m equations with m unknowns.
- Set these equations to 0:

$$X^{T}(Y-X\mathbf{w})=0$$

Remember that derivative has to be 0 at a minimum of Err(w)

Least-squares solution method

• We want to solve for w: $X^T (Y - Xw) = 0$

• Try a little algebra:
$$X^T Y = X^T X w$$

$$\hat{\mathbf{w}} = (X^T X)^{-1} X^T Y$$

(w denotes the estimated weights)

• Train set predictions:
$$\hat{Y} = X\hat{w} = X (X^TX)^{-1} X^T Y$$

• Predict new data
$$X' \rightarrow Y'$$
: $Y' = X'\hat{\mathbf{w}} = X'(X^TX)^{-1}X^TY$

Example of linear regression

x	y
0.86	2.49
0.09	0.83
-0.85	-0.25
0.87	3.10
-0.44	0.87
-0.43	0.02
-1.10	-0.12
0.40	1.81
-0.96	-0.83
0.17	0.43

What is a plausible estimate of w?

Try it!

Data matrices

Data matrices

$$X^{T}Y = \begin{bmatrix} 0.86 & 0.09 & -0.85 & 0.87 & -0.44 & -0.43 & -1.10 & 0.40 & -0.96 & 0.17 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} 2.49 & 0.83 & -0.25 & 0.02 & 0.25 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.03 & 0.43 &$$

Solving the problem

$$\mathbf{w} = (X^T X)^{-1} X^T Y = \begin{bmatrix} 4.95 & -1.39 \\ -1.39 & 10 \end{bmatrix}^{-1} \begin{bmatrix} 6.49 \\ 8.34 \end{bmatrix} = \begin{bmatrix} 1.60 \\ 1.05 \end{bmatrix}$$

So the best fit line is y = 1.60x + 1.05.

Solving the problem

$$\mathbf{w} = (X^T X)^{-1} X^T Y = \begin{bmatrix} 4.95 & -1.39 \\ -1.39 & 10 \end{bmatrix}^{-1} \begin{bmatrix} 6.49 \\ 8.34 \end{bmatrix} = \begin{bmatrix} 1.60 \\ 1.05 \end{bmatrix}$$

So the best fit line is y = 1.60x + 1.05.

Interpreting the solution

- Linear fit for a prostate cancer dataset
 - Features X = {lcavol, lweight, age, lbph, svi, lcp, gleason, pgg45}
 - Output y = level of PSA (an enzyme which is elevated with cancer).
 - High coefficient weight (in absolute value) = important for prediction.

Term	Coefficient	Std. Error
Intercept	$w_0 = 2.46$	0.09
lcavol	0.68	0.13
lweight	0.26	0.10
age	-0.14	0.10
lbph	0.21	0.10
svi	0.31	0.12
lcp	-0.29	0.15
gleason	-0.02	0.15
pgg45	0.27	0.15

Interpreting the solution

- Caveat: data should be in same range
- If we change unit for age from years to months, we expect the optimal weight to be 12x as low (so predictions don't change)
- Doesn't mean age became 12x less relevant!
- Can normalize data to make range similar
 - E.g. subtract average and divide by standard deviation
- More principled approach in next lecture

Example

Suppose we observe measurements at 11 equally spaced positions x = -5, -4, ..., 4, 5. The output for all measurements is y=0, except at x=0 where we observe y=1.

- 1. Using least-squares regression, what are the weights of the best line to fit this data?
- 2. What is the magnitude of the remaining least-squares error?

Example

Suppose we observe measurements at 11 equally spaced positions x = -5, -4, ..., 4, 5. The output for all measurements is y=0, except at x=0 where we observe y=1.

- 1. Using least-squares regression, what are the weights of the best line to fit this data?
 - Same outcomes for postive and negative x, so slope is 0
 - Loss lowest if intercept is mean of outputs (1/11)
- 2. What is the magnitude of the remaining least-squares error?
 - (1/11) ² x10 datapoints with y=0 + (10/11) ² at x=0

Computational cost of linear regression

What operations are necessary?

Computational cost of linear regression

- What operations are necessary?
 - Overall: 1 matrix inversion + 3 matrix multiplications
 - $-X^TX$ (other matrix multiplications require fewer operations.)
 - X^T is mxn and X is nxm, so we need nm^2 operations.
 - $-(X^{T}X)^{-1}$
 - X^TX is mxm, so we need m^3 operations.

Computational cost of linear regression

- What operations are necessary?
 - Overall: 1 matrix inversion + 3 matrix multiplications
 - $-X^{T}X$ (other matrix multiplications require fewer operations.)
 - X^T is mxn and X is nxm, so we need nm^2 operations.
 - $-(X^{T}X)^{-1}$
 - X^TX is mxm, so we need m^3 operations.

 We can do linear regression in polynomial time, but handling large datasets (many examples, many features) can be problematic.

An alternative for minimizing mean-squared error (MSE)

- Recall the least-square solution: $\hat{\mathbf{w}} = (X^T X)^{-1} X^T Y$
- What if X is too big to compute this explicitly (e.g. $m \sim 10^6$)?

An alternative for minimizing mean-squared error (MSE)

- Recall the least-square solution: $\hat{\mathbf{w}} = (X^T X)^{-1} X^T Y$
- What if X is too big to compute this explicitly (e.g. m ~ 10⁶)?

• Go back to the gradient step: $Err(w) = (Y - Xw)^T (Y - Xw)$

$$\partial Err(\mathbf{w})/\partial \mathbf{w} = -2 X^T (Y-X\mathbf{w})$$

$$\partial Err(\mathbf{w})/\partial \mathbf{w} = 2(X^T X \mathbf{w} - X^T Y)$$

Gradient-descent solution for MSE

Consider the error function:

- The gradient of the error is a vector indicating the direction to the minimum point.
- Instead of directly finding that minimum (using the closed-form equation), we can take small steps towards the minimum.

Gradient-descent solution for MSE

• We want to produce a sequence of weight solutions, \mathbf{w}_0 , \mathbf{w}_1 , \mathbf{w}_2 ...,

```
such that: Err(\mathbf{w}_0) > Err(\mathbf{w}_1) > Err(\mathbf{w}_2) > \dots
```

Gradient-descent solution for MSE

We want to produce a sequence of weight solutions, w₀, w₁, w₂...,
 such that: Err(w₀) > Err(w₁) > Err(w₂) > ...

The algorithm:

Given an initial weight vector \mathbf{w}_0 , Do for k=1, 2, ...

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \alpha_k \, \partial Err(\mathbf{w}_k) / \partial \mathbf{w}_k$$

End when $|\mathbf{w}_{k+1} - \mathbf{w}_k| < \varepsilon$

• Parameter $\alpha_k > 0$ is the step-size (or <u>learning rate</u>) for iteration k.

Convergence

• Convergence depends in part on the α_k .

- If steps are too large: the w_k may oscillate forever.
 - This suggests that $\alpha_k \to 0$ as $k \to \infty$.

• If steps are too small: the \mathbf{w}_k may not move far enough to reach a local minimum.

Robbins-Monroe conditions

The α_k are a Robbins-Monroe sequence if:

$$\sum_{k=0:\infty} \alpha_k = \infty$$

$$\sum_{k=0:\infty} \alpha_k^2 < \infty$$

$$\sum_{k=0:\infty} \alpha_k^2 < \infty$$

These conditions are sufficient to ensure convergence of the \mathbf{w}_k to a <u>local minimum</u> of the error function.

Robbins-Monroe conditions

• The α_k are a Robbins-Monroe sequence if:

$$\sum_{k=0:\infty} \alpha_k = \infty$$

$$\sum_{k=0:\infty} \alpha_k^2 < \infty$$

These conditions are sufficient to ensure convergence of the w_k to a <u>local minimum</u> of the error function.

E.g.
$$\alpha_k = 1/(k+1)$$
 (averaging)
E.g. $\alpha_k = 1/2$ for $k = 1, ..., T$
 $\alpha_k = 1/2^2$ for $k = T+1, ..., (T+1)+2T$
etc.

Local minima

Convergence is <u>NOT</u> to a global minimum, only to local minimum.

The blue line represents the error function. There is <u>no guarantee</u> regarding the amount of error of the weight vector found by gradient descent, compared to the globally optimal solution.

Local minima

Convergence is <u>NOT</u> to a global minimum, only to local minimum.

- For linear function approximations using Least-Mean Squares (LMS)
 error, this is not an issue: only ONE global minimum!
 - Local minima affects many other function approximators.

Local minima

Convergence is <u>NOT</u> to a global minimum, only to local minimum.

- For linear function approximations using Least-Mean Squares (LMS)
 error, this is not an issue: only ONE global minimum!
 - Local minima affects many other function approximators.
- Repeated random restarts can help (in all cases of gradient search).

Example (cont'd)

Suppose we observe measurements at 11 equally spaced positions x = -5, -4, ..., 4, 5. The output for all measurements is y=0, except at x=0 where we observe y=1.

- 1. Using least-squares regression, what are the weights of the best line to fit this data?
- 2. What is the magnitude of the remaining least-squares error?
- 3. Perform 1 step of gradient descent on the weights found in (1) using step size α =0.05. What are the new weights?

Example (cont'd)

Suppose we observe measurements at 11 equally spaced positions x = -5, -4, ..., 4, 5. The output for all measurements is y=0, except at x=0 where we observe y=1.

- 1. Using least-squares regression, what are the weights of the best line to fit this data?
- 2. What is the magnitude of the remaining least-squares error?
- 3. Perform 1 step of gradient descent on the weights found in (1) using step size α =0.05. What are the new weights?
 - We are at optimum already. Weights stay the same (1/11,0)

Basic least-squares solution method

- Recall the least-square solution: $\hat{\mathbf{w}} = (X^T X)^{-1} X^T Y$
- Assuming for now that X is reasonably small so computation and memory are not a problem. Can we always evaluate this?

Basic least-squares solution method

- Recall the least-square solution: $\hat{\mathbf{w}} = (X^T X)^{-1} X^T Y$
- Assuming for now that X is reasonably small so computation and memory are not a problem. Can we always evaluate this?
- To have a unique solution, we need X^TX to be nonsingular.
 That means X must have full column rank (i.e. no features can be expressed using other features.)

Exercise: What if X does not have full column rank? When would this happen? Design an example. Try to solve it.

Dealing with difficult cases of $(X^TX)^{-1}$

Case #1: The weights are not uniquely defined.

Solution: Re-code or drop some redundant columns of X.

Case #2: The number of features/weights (m) exceeds the number of training examples (n).

Solution: Reduce the number of features using various techniques (to be studied later.)

Predicting recurrence time from tumor size

This function looks complicated, and a linear hypothesis does not seem very good.

What should we do?

Predicting recurrence time from tumor size

This function looks complicated, and a linear hypothesis does not seem very good.

What should we do?

- Pick a better function?
- Use more features?
- Get more data?

Input variables for linear regression

- Original quantitative variables X₁, ..., X_m
- Transformations of variables, e.g. X_{m+1} = log(X_i)
- Basis expansions, e.g. $X_{m+1} = X_i^2$, $X_{m+2} = X_i^3$, ...
- Interaction terms, e.g. X_{m+1} = X_iX_i
- Numeric coding of qualitative variables, e.g. $X_{m+1} = 1$ if X_i is true and 0 otherwise.

In all cases, we can add X_{m+1} , ..., X_{m+k} to the list of original variables and perform the linear regression.

Example of linear regression with polynomial terms

$$f_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}_0 + \mathbf{w}_1 \mathbf{x} + \mathbf{w}_2 \mathbf{x}^2$$

$$X = \begin{bmatrix} x^2 & x \\ 0.75 & 0.86 & 1 \\ 0.01 & 0.09 & 1 \\ 0.73 & -0.85 & 1 \\ 0.76 & 0.87 & 1 \\ 0.19 & -0.44 & 1 \\ 0.18 & -0.43 & 1 \\ 1.22 & -1.10 & 1 \\ 0.16 & 0.40 & 1 \\ 0.93 & -0.96 & 1 \\ 0.03 & 0.17 & 1 \end{bmatrix}$$

$$Y = \begin{bmatrix} 2.49 \\ 0.83 \\ -0.25 \\ 3.10 \\ 0.87 \\ 0.02 \\ -0.12 \\ 1.81 \\ -0.83 \\ 0.43 \end{bmatrix}$$

Solving the problem

$$\mathbf{w} = (X^T X)^{-1} X^T Y = \begin{bmatrix} 4.11 & -1.64 & 4.95 \\ -1.64 & 4.95 & -1.39 \\ 4.95 & -1.39 & 10 \end{bmatrix}^{-1} \begin{bmatrix} 3.60 \\ 6.49 \\ 8.34 \end{bmatrix} = \begin{bmatrix} 0.68 \\ 1.74 \\ 0.73 \end{bmatrix}$$

So the best order-2 polynomial is $y = 0.68x^2 + 1.74x + 0.73$.

Compared to y = 1.6x + 1.05 for the order-1 polynomial.

Input variables for linear regression

How to choose input variables?

- Propose different strategies, then perform model selection using cross validation (more details later)
- Add many transformation to the set of features, then perform feature selection or dimension reduction (more details later)
- Use problem specific insights:
 - Say, predict displacement of falling option as function of time
 - From physics, know that s=gt²
 - In that case, use squared transformation of t (input variable is t^2)

What you should know

- Definition and characteristics of a supervised learning problem.
- Linear regression (hypothesis class, cost function).
- Closed-form least-squares solution method (algorithm, computational complexity, stability issues).
- Gradient descent method (algorithm, properties).

To-do

- Reproduce the linear regression example (slides 17-21), solving it using the software of your choice.
- Suggested complementary readings (this lecture and next lecture):
 - Ch.2 (Sec. 2.1-2.4, 2.9) of Hastie et al.
 - Ch.3 of Bishop.
 - Ch.9 of Shalev-Schwartz et al.
- Write down midterm date in agenda: April 4th, 5:30pm.
- Tutorial times (appearing soon): www.cs.mcgill.ca/~hvanho2/comp551/schedule.html
- Office hours (confirmed): www.cs.mcgill.ca/~hvanho2/comp551/syllabus.html

Weight space view

Instance space view (Geometric view)

