
DEVS Standards Group meeting
Winter Simulation Conference 2001

Washington, DC

December 11, 2001

DEVS standardization: some thoughts

Hans Vangheluwe
Juan de Lara, Jean-Sébastien Bolduc, Ernesto Posse

Modelling, Simulation and Design Lab (MSDL)
School of Computer Science

McGill University
Montréal, Canada

hv@cs.mcgill.ca
http://moncs.cs.mcgill.ca

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 1/27



Presentation Overview

1. Previous experiences with Modelling/Simulation/Standardization

2. Standardizing . . . what ?

(a) The DEVS formalisms

(b) The DEVS model representation

(c) The DEVS model-solver interface

(d) The DEVS model libraries

3. Meta-modelling

� Architecture: modelling formalism syntax and semantics

� Examples of Meta-modelling in AToM3

4. Meta-modelling syntax and semantics of xyz-DEVS

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 2/27



Previous experiences with
Modelling/Simulation/Standardization

� Formalism – Modelling Language – Simulation Model – Libraries

� DAE++ – Modelica – DSblock – Modelica Standard Library

� PDE + DAE – MSL-USER – MSL-EXEC – WEST++ model library

� PDE + ODE + ALG – OOCSMP – Java – OOCSMP library

� Python-(classic)DEVS (with ports)

� Meta-modelling syntax and semantics of Causal Block Diagrams

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 3/27



Standardizing . . . what ?

1. The DEVS formalisms

2. The DEVS model representation

3. The DEVS model-solver interface

4. The DEVS model libraries

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 4/27



Standardizing the DEVS formalisms

Relationships between different variants of DEVS

1. Inheritance (specialization) – caveat: inheritance is also a

transformation

2. Transformation (e.g., onto Classic DEVS)

Reasons for transformation:

� conceptual: insight, proof of “equivalence” (morphism)

� avoid building a new simulator. Automatically transform to

formalism for which a (efficient) simulator exists.

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 5/27



Standardizing the DEVS model representation
For exchange and re-use

1. Between programs, agents, machines, . . .

Needs to be platform neutral, efficiently machine readable and

writable.

Suggestion: XML.

2. Between humans

Needs to be readable, expressive, compact.

Suggestions: graphical (composition), textual (expressions, loops,

scoping, inheritance).

3. Storage of large amounts of data models (trajectory formalism)

Needs to be compact.

Suggestions: binary (XDR, dbase). Least important issue.

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 6/27



OO Modelling in Modelica
� everything is a class

� inheritance hierarchy: from generic to specific

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 7/27



Electrical example: Modelica vs. Matlab/Simulink

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 8/27



Electrical Types

type Time = Real (final quantity="Time", final unit="s");

type ElectricPotential = Real (final quantity="ElectricPotential",

final unit="V");

type Voltage = ElectricPotential;

type ElectricCurrent = Real (final quantity="ElectricCurrent",

final unit="A");

type Current = ElectricCurrent;

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 9/27



Electrical Pin Interface

connector PositivePin "Positive pin of an electric component"

Voltage v "Potential at the pin";

flow Current i "Current flowing into the pin";

end PositivePin;

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 10/27



Electrical Port

partial model OnePort

"Component with two electrical pins p and n

and current i from p to n"

Voltage v "Voltage drop between the two pins (= p.v - n.v)";

Current i "Current flowing from pin p to pin n";

PositivePin p;

NegativePin n;

equation

v = p.v - n.v;

0 = p.i + n.i;

i = p.i;

end OnePort;

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 11/27



Electrical Resistor

model Resistor "Ideal linear electrical resistor"

extends OnePort;

parameter Resistance R=1 "Resistance";

equation

R*i = v;

end Resistor;

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 12/27



The circuit
model circuit

Resistor R1(R=10);

Capacitor C(C=0.01);

Resistor R2(R=100);

Inductor L(L=0.1);

VsourceAC AC;

Ground G;

equation

connect(AC.p, R1.p);

connect(R1.n, C.p);

connect(C.n, AC.n);

connect(R1.p, R2.p);

connect(R2.n, L.p);

connect(L.n, C.n);

connect(AC.n, G.p);

end circuit;

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 13/27



Standardizing the DEVS model representation
� ability to reason about, manipulate model � model is not code

� language (C++, Java, . . . ) independent (x � y� z � 2)

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 14/27



Standardizing the DEVS model-solver interface

SOLVER(s)

SIMULATOR = solver + model

MODEL
dynamics

MODEL
symbolic

information

experimentation
environment

(e.g., parameter
input,

visulisation)

or

simulator
"bus"

(e.g., HLA)

or

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 15/27



Standardizing the DEVS model-solver interface
� Only the interface (API) is defined

� This allows for multiple language bindings

� Does the simulator correctly implement the formalism’s semantics ?

How to verify ?

– formal proof (starting from an implementation): hard !

– compare with automatically generated (from formal specification)

reference implementation.

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 16/27



Standardizing the DEVS model libraries
� success of language/standard depends on availability of standard

libraries (in different application domains).

� success increases if re-use mechanisms are good (inheritance)

� Modelica, Extend, C++ vs. Java, . . .

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 17/27



What is Meta-modelling ?
� A meta-model is a model of a modelling formalism

� A meta-model is itself a model. Its syntax and semantics are

governed by the formalism it is described in. That formalism can be

modelled in a meta-meta-model.

� As a meta-model is a model, we can reason about it, manipulate it,

. . . In particular, properties of (all models in) a formalism can be

formally proven.

� Formalism-specific modelling and simulation tools can automatically

be generated from a meta-model (AToM3).

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 18/27



� Formalisms can be tailored to specific needs by modifying the

meta-model (possibly through inheritance if specializing).
� Semantics of new formalisms through extension or transformation

(multi-formalism).

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 19/27



Meta-modelling architecture: syntax

meta-meta
model

meta-model
processor

meta-model
user
input

a model of a class of models (the formalism MF)
semantics within formalism MMF
describes: structure and constraints

a model in formalism MF

-create
-delete
-verify (local, global)

meta-model
processor model

user
input

a model of a class of models (the formalism F)
semantics within formalism MF
describes: structure and constraints

a model in formalism F

-create
-delete
-verify (local, global)

MMF

MF

F

(ER)

(ER)

(FSA)

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 20/27



Meta-modelling architecture: transformation

meta-model a model in formalism ER

meta-model
processor

model

user
input

a model of a class of models 
(the formalism NFA)
semantics within formalism ER

a model in formalism NFA

-create
-delete
-verify (local, global)

MF

F

(ER)

(NFA)

meta-model a model in formalism MF

meta-model
processor

model

user
input

a model of a class of models (the formalism F)
semantics within formalism MF
describes: structure and constraints

a model in formalism FSA

-create
-delete
-verify (local, global)

MF

F

(ER)

(FSA)
(multi-formalism)

model transformer
=

meta-model
processor

transformation
meta-model

MF (GGR)

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 21/27



Examples of Meta-modelling in AToM3

1. Petri Net Meta-model (syntax)

2. Petri Net Graph Grammar (operational semantics)

3. Petri Net Modelling and Simulation tool (reference implementation)

4. GPSS modelling environment (syntax only, semantics through code

generation for existing, efficient GPSS simulator)

5. Other examples: NFA to DFA, Causal Block Diagrams, Data Flow

Diagrams to Structure Diagrams, . . .

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 22/27



Petri Net Meta-model and generated tool

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 23/27



Generated Petri Net Simulator – reference impl

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 24/27



GPSS modelling environment

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 25/27



Generated Code
* Manufacturing Shop, Model 5

* G. Gordon

SIMULATE

L0 GENERATE 5,0 CREATE PARTS

L1 ADVANCE 2,0 PLACE ON CONVEYOR

L2 TRANSFER BOTH,L3,CONV1 MOVE TO FIRST INSPECTOR

L3 SEIZE INS1 GET FIRST INSPECTOR

L11 ADVANCE 12,9 INSPECT

L14 RELEASE INS1 FREE INSPECTOR

TAB TABULATE 1 MEASURE TRANSIT TIME

L20 TERMINATE 1

CONV1 ADVANCE 2,0 PLACE ON CONVEYOR

L5 TRANSFER BOTH,L6,CONV2 MOVE TO SECOND INSPECTOR

L6 SEIZE INS2 GET SECOND INSPECTOR

L12 ADVANCE 12,9 INSPECT

L15 RELEASE INS2 FREE INSPECTOR

L18 TRANSFER ,TAB

CONV2 ADVANCE 2,0 PLACE ON CONVEYOR

L8 TRANSFER BOTH,L9,CONV3 MOVE TO THIRD INSPECTOR

L9 SEIZE INS3 GET THIRD INSPECTOR

L13 ADVANCE 12,9 INSPECT

L16 RELEASE INS3 FREE INSPECTOR

L19 TRANSFER ,TAB

CONV3 TERMINATE 0

1 TABLE M1,5,5,10

START 1000

END

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 26/27



Meta-modelling syntax and semantics of xyz-DEVS
� Only connect . . .

� Ernesto Posse: meta-modelling DEVS (variable structure, automatic

bisimulation proofs)

� Jean-Sébastien Bolduc: mapping ODEs onto behaviourally equivalent

DEVS

� Thierry Cornelis: meta-models � XML, MSL

� Hans Vangheluwe & Indrani A.V.: meta-model non-causal (Modelica)

models

Winter 2001, December 11, Washington DC Hans Vangheluwe DEVS standardization: some thoughts 27/27


