COMP 760 - Winter 2017 - Assignment 1

Due: Feb 7th, 2017

General rules: In solving these you may consult with each other.

1. Consider a graph G = (V, E) and a set $A \subseteq \{0,1\}^n$ satisfying $\max_{S \neq \emptyset} |\widehat{A}(S)| \leq \delta$, and let $\alpha := \widehat{A}(\emptyset)$. Let $\{x_v : v \in V(H)\}$ be independent random variables taking values in $\{0,1\}^n$ uniformly at random for some number n. Show that

$$\left| \mathbb{E} \left[\prod_{uv \in E} A(x_u + x_v) \right] - \alpha^{|E(G)|} \right| = o_{\delta \to 0}(1),$$

where the bound does not depend on n (it depends only on δ and G).

2. This exercise shows that the Fourier uniformity (i.e. having small non-principal Fourier coefficients) is not sufficient to show that a set behaves similar to a random set in terms of the density of all linear structures. We shall construct a set A_n which is very uniform, but the density of certain structure in A_n is different from a random subset with the same density as A_n .

(a) Show that the set

$$A_n = \left\{ x \in \mathbb{Z}_2^{2n} : \sum_{i=1}^n x_{2i-1} x_{2i} \equiv 0 \mod 2 \right\}$$

satisfies $\max_{S \neq \emptyset} |\widehat{A}_n(S)| = o_{n \to \infty}(1)$.

- (b) Show that $\lim_{n\to\infty} |\widehat{A}_n(\emptyset)| = \frac{1}{2}$.
- (c) Show that

$$\lim_{n \to \infty} \left| \mathbb{E} \left[\prod_{1 \le u < v < w \le 6} 1_{A_n} (x_u + x_v + x_w) \right] - 2^{-\binom{6}{3}} \right| \ne 0,$$

where x_1, \ldots, x_6 are independent random variables taking values independently in \mathbb{Z}_2^n .

3. Consider a decision tree computing a Boolean function $f: \{-1,1\}^n \to \{-1,1\}$. For an $x \in \{-1,1\}^n$ and $i \in \{1,\ldots,n\}$ define $R_i(x) = x_i$ if the variable x_i is queried by the decision tree while computing f(x), and define $R_i(x) = 0$ otherwise. Prove that for every i, we have $\widehat{f}(\{i\}) = \mathbb{E}f(x)R_i(x)$, and use this to show that if f is monotone then

$$I[f] \le \sqrt{h}$$
,

where h is the height of the decision tree. Can you prove the stronger bound that $I[f] \leq \sqrt{\log_2 s}$ where s is the number of leaves of the tree?

4. Use Marcinkiewicz-Zygmund inequality (See wikipedia) to prove the following: Let p > 1 and let $f: \{-1,1\}^n \to \{-1,1\}$ be a Boolean function satisfying $\sum |\widehat{f}(S)| = \lambda$. There exists a function $f: \{-1,1\}^n \to \mathbb{R}$ such that g has at most $O(p/\epsilon^2)$ non-zero Fourier coefficients and it approximates f in the L_p norm:

$$||f - g||_p \le \epsilon \lambda.$$