1. Reductions

- **Reductions:** Given families $f_n, g_n : \{0,1\}^n \times \{0,1\}^m \rightarrow \{0,1\}$, we say $\{f_n\} \leq_{cc} \{g_n\}$ if for every n, there exists $h_1, h_2 : \{0,1\}^n \rightarrow \{0,1\}^m$ for $\log(m) \leq \log^{O(1)}(n)$ such that $f_n(x,y) = g_m(h_1(x), h_2(y))$. Note that for all the communication complexity classes C that we defined in the previous lecture, if $\{g_n\} \in C$ and $\{f_n\} \leq_{cc} \{g_n\}$, then $\{f_n\} \in C$.

- **Completeness:** A problem $\{g_n\}$ is C-complete for a communication complexity class C if and only if
 1. $\{g_n\} \in C$.
 2. $\{f_n\} \leq_{cc} \{g_n\}$ for every $\{f_n\} \in C$.

One can think of C-complete problems as the most difficult problem in the class C. The next proposition shows that DISJ is the hardness problem in the class CoNP.

Proposition 1. The disjointness problem DISJ is CoNP-complete.

Proof. First note that DISJ \in CoNP as if $S \cap T \neq \emptyset$ then the oracle can send an $i \in S \cap T$ and Alice and Bob can both verify this. To show the completeness, consider $\{f_n\} \in$ CoNP. Then by definition of CoNP we have $m := C^0(f_n) \leq 2^{\log^c n}$. Consider the following reduction: $h_1(x)$ is the list of the rectangles in the cover that contain x, and $h_2(y)$ is the rectangles in the cover that contain y. Note that $|h_1(x)|, |h_2(x)| \leq C^0(f) = \log^{O(1)}(n)$. Furthermore

$$f(x,y) = 0 \iff h_1(x) \cap h_2(y) \neq \emptyset.$$

\[\square\]

2. Matrix norms

- **Let** $A \in \mathbb{R}^{m \times n}$. The singular values $\sigma_1 \geq \ldots \geq \sigma_{\min(m,n)} \geq 0$ of A are the square roots of the eigenvalues of AA^T. The singular decomposition theorem says

$$A = U \Sigma V^T,$$

for unitary matrices $U_{m \times m}$ and $V_{n \times n}$, where $\Sigma_{m \times n}$ is a diagonal matrix with $\sigma_1, \ldots, \sigma_{\min(m,n)}$ on the diagonal.

- **Matrix inner product:** For $A, B \in \mathbb{R}^{m \times n}$, we have $\langle A, B \rangle := \text{tr}(AB^T) = \sum_{i,j} A_{ij}B_{ij}$.

- **Spectral Norm:** $\|A\| = \max_{\|x\|=1} \|Ax\| = \sigma_1 = \|\vec{\sigma}\|_\infty$.

1
• Trace Norm: \(\|A\|_\Sigma = \sum \sigma_i = \|\vec{\sigma}\|_1 \).

• Frobenius Norm: \(\|A\|_F = \sqrt{\sum \sigma_i^2} = \|\vec{\sigma}\|_2 = \sqrt{\sum_{i,j} A_{ij}^2} = \sqrt{\langle A, A \rangle} \).

• Some of the classical inequalities about the \(L_p \) spaces easily extend to the matrix norms:

Exercise 2. Show that

1. \(\sqrt{\text{rank}(A)} \geq \|A\|_\Sigma / \|A\|_F \).
2. \(\langle A, B \rangle \leq \|A\|_F \|B\|_F \).
3. \(\langle A, B \rangle \leq \|A\| \|B\|_\Sigma \).

3. Forster’s theorem

The goal of this section is to prove Forster’s theorem that the inner product function \(\text{IP}_n \) has large sign-rank. We start from the following technical lemma whose proof is not very easy.

Lemma 3 (Forster [For02]). Let \(U \subseteq \mathbb{R}^r \) be a finite set of vectors in general position\(^1\) and suppose \(|U| \geq r \). There exists a non-singular \(A \in \mathbb{R}^{r \times r} \) such that

\[
\sum_{u \in U} \frac{1}{\|Au\|^2} (Au)(Au)^T = \frac{|U|}{r} I_r.
\]

Proof. See Forster’s paper [For02] or David Stuerer’s exposition on this theorem [http://www.cs.princeton.edu/courses/archive/spr08/cos598D/forster.pdf].

Note that every \(X \times Y \) matrix \(R \) with \(\|R\|_\infty \leq 1 \) satisfies \(\|R\|_F \leq \sqrt{|X||Y|} \). Next we will prove the key proposition of Forster.

Proposition 4. Let \(M \in \mathbb{R}^{X \times Y} \). There exists a matrix \(R \) that sign-represents \(M \), \(\text{rank}(R) = \text{rank}_\pm(M) \), \(\|R\|_\infty \leq 1 \), and

\[
\|R\|_F = \sqrt{\frac{|X||Y|}{\text{rank}_\pm(M)}} = \sqrt{\frac{|X||Y|}{\text{rank}(R)}}.
\]

Proof. Obviously there exists a matrix \(Q \) that sign-represents \(M \) and \(\text{rank}(Q) = \text{rank}_\pm(M) =: r \). We can decompose \(Q \) and obtain vectors \(\{u_x\}_{x \in X}, \{v_y\}_{y \in Y} \subseteq \mathbb{R}^r \) such that

\[
Q = [\langle u_x, v_y \rangle]_{x \in X, y \in Y}.
\]

Since \(\text{rank}(Q) = r \), the vectors \(\{u_x\}_{x \in X} \) are in the general position. Since \(\text{rank}_\pm(M) \leq \text{rank}(M) \), we know \(|X| \geq r \), and thus we can apply Lemma 3 to obtain a non-singular \(A \in \mathbb{R}^{r \times r} \) with

\[
\sum_{x \in X} \frac{1}{\|Au_x\|^2} (Au_x)(Au_x)^T = \frac{|X|}{r} I_r.
\]

Define

\[
R = \left[\frac{\langle Au_x, (A^{-1})^T v_y \rangle}{\|Au_x\| \|(A^{-1})^T v_y\|} \right]_{x \in X, y \in Y} = \left[\frac{\langle u_x, v_y \rangle}{\|Au_x\| \|(A^{-1})^T v_y\|} \right]_{x \in X, y \in Y}.
\]

\(^1\)General position means that any set of at most \(r \) points in \(U \) are linearly independent
Obviously \(\text{rank}(R) = r \), \(R \) sign-represents \(M \) and also by Cauchy-Schwarz \(\|R\|_{\infty} \leq 1 \). It remains to verify (1). For a fixed \(y \), we have

\[
\sum_{x \in X} R_{xy}^2 = \sum_{x \in X} \frac{\langle Au_x, (A^{-1})^T v_y \rangle^2}{\|Au_x\|^2\|(A^{-1})^T v_y\|^2}
\]

\[
= \sum_{x \in X} \frac{(v_y^T A^{-1})(Au_x)(Au_x)^T((A^{-1})^T v_y)}{\|Au_x\|^2\|(A^{-1})^T v_y\|^2}
\]

\[
= \frac{(v_y^T A^{-1})(|X| I_r)((A^{-1})^T v_y)}{\|(A^{-1})^T v_y\|^2} = |X|/r \cdot \frac{\langle (A^{-1})^T v_y, (A^{-1})^T v_y \rangle}{\|(A^{-1})^T v_y\|^2}
\]

\[
= |X|/r.
\]

Hence

\[
\|R\|_F^2 = \sum_{x,y} R_{x,y}^2 = \frac{|Y||X|}{r},
\]

and this verifies (1). □

Theorem 5 (Forster [For12]). For \(M \) be a sign-matrix,

\[
\text{rank}_{\pm}(M) \geq \frac{\sqrt{|X||Y|}}{\|M\|}.
\]

Proof. Let \(R \) be as in Proposition 4 with \(r := \text{rank}(R) = \text{rank}_{\pm}(M) \). Since \(M \) is a sign-matrix, and \(R \) sign-represents \(M \) and satisfies \(\|R\|_{\infty} \leq 1 \), we have

\[
\|R\|_F^2 \leq \sum |R_{x,y}| \leq \langle M, R \rangle \leq \|M\| \|R\|_\Sigma \leq \|M\| \|R\|_F \sqrt{r},
\]

where the last two inequalities are from Exercise 2. Using (1) to replace \(\|R\|_F = \sqrt{|X||Y|}/r \), this simplifies to \(r \geq \frac{\sqrt{|X||Y|}}{\|M\|} \). □

Recall that all the eigenvalues of \(M_{IP_n} \) are of the form \(\pm 2^{n/2} \). Thus \(\|M_{IP_n}\| = 2^{n/2} \). Replacing this in the above theorem proves Forster’s theorem that

\[
\text{rank}_{\pm}(IP_n) \geq \frac{\sqrt{2^n \times 2^n}}{2^{n/2}} = 2^{n/2},
\]

which in particular shows that \(U(IP_n) \geq \frac{n}{2} \). Hence inner product does not belong to the class \(\text{UPP}^{cc} \).

Finally let us mention an extension of Theorem 5 that we will need later in the course.

Theorem 6 (Razborov-Sherstov [RS10]). Let \(M \in \mathbb{R}^{X \times Y} \) and \(\gamma \geq 0 \) we have

\[
\text{rank}_{\pm}(M) \geq \frac{\gamma s}{\|M\|\sqrt{s + \gamma h}},
\]

where \(s = |X||Y| \) and \(h = \{|(x, y) : |M(x, y)| < \gamma\}|. \)

Proof. Let \(R \) be as in Proposition 4 with \(r := \text{rank}(R) = \text{rank}_{\pm}M \). On the one hand we have

\[
\langle M, R \rangle = \sum_{x,y} M_{xy}R_{xy} \geq \sum_{x,y, |M_{xy}| \geq \gamma} M_{xy}R_{xy} \geq \gamma \left(\sum_{x,y} R_{xy} - h \right) \geq \gamma \left(\sum_{x,y} R_{x,y}^2 - h \right)
\]

\[
= \gamma \|R\|_F^2 - \gamma h.
\]
On the other hand
\[\langle M, R \rangle \leq \|M\|\|R\| \Sigma \leq \|M\|\|R\|_F \sqrt{r}. \]
Hence
\[\|M\|\|R\|_F \sqrt{r} \geq \gamma \|R\|^2_F - \gamma h, \]
which using \([X\|Y\]_F = \sqrt{\frac{X^T Y}{r}}\) from (1) simplifies to the desired result. \(\square\)

REFERENCES

School of Computer Science, McGill University, Montréal, Canada
E-mail address: hatami@cs.mcgill.ca