COMP 760 - Assignment 2 - Due: Feb 18th.

You are allowed to collaborate in solving these questions, but each person should write and submit her own solution.

- 1. Show that for every function $f : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$, we have $U^{pub}(f) = O(1)$.
- 2. Show that PP^{cc} is the class of problems with $disc(f_n) \ge 2^{-\log^c(n)}$.
- 3. Show that $PP^{cc} \supseteq NP^{cc} \cup CoNP^{cc}$.
- 4. Consider a problem $\{f_n\}$ in BPP^{cc}.
 - (a) Show that there is a randomized protocol P(x, y, r) which uses only $|r| = O(\log n)$ random bits, and still achieves

$$\Pr[P(x, y, r) \neq f_n(x, y)] \le \frac{1}{3}.$$

(b) Show that there is a randomized protocol Q(x, y, r) which uses only $m := |r| = O(\log^2 n)$ random bits, and achieves

$$\Pr[Q(x, y, r) \neq f_n(x, y)] \le \frac{1}{3m}.$$

- (c) Let m, and Q(x, y, r) be as above, and we will interpret r as taking values in \mathbb{F}_2^m according to some distribution. Use probabilistic method to prove the following statements:
 - If $f_n(x, y) = 1$ then there exists a choice of $a_1, \ldots, a_m \in \mathbb{F}_2^m$ such that for every $z \in \mathbb{F}_2^m$ there is at least one $i \in \{1, \ldots, m\}$ for which $Q(x, y, a_i + z) = 1$.
 - If $f_n(x,y) = 0$ then for every choice of $a_1, \ldots, a_m \in \mathbb{F}_2^m$, one can find a $z \in \mathbb{F}_2^m$ such that $Q(x, y, a_i + z) = 0$ for all $i \in \{0, \ldots, m\}$.
- (d) Conclude that $BPP^{cc} \subseteq \Sigma_2^{cc} \cap \Pi_2^{cc}$.

5. Consider the group \mathbb{F}_p^t where p is a prime. The characters of this group are the functions $\chi_a : \mathbb{F}_p^t \to \mathbb{C}$ for $a \in \mathbb{F}_p^n$, defined as $\chi_a : x \mapsto \exp(\frac{2\pi i}{p} \sum_{j=1}^t x_j a_j)$. It is easy to see that these are orthonormal and thus every function $f : \mathbb{F}_p^t \to \mathbb{C}$ has a unique Fourier expansio $f = \sum_{a \in \mathbb{F}_p^t} \widehat{f}(a)\chi_a$.

Given $f : \mathbb{F}_p^t \to \mathbb{C}$, we can define the (n, t, f)-pattern matrix as before: entries are $f(x|_V + w)$ where $x \in \mathbb{F}_p^n$ is the row label, and $(V, w) \in \mathcal{V}(n, t) \times \mathbb{F}_p^t$ is the column label, and the summation $x|_V + w$ is in the group \mathbb{F}_p^t . What are the singular values of this pattern matrix?