COMP 760 - Assignment 1 - Due: Jan 30th.

You are allowed to collaborate in solving these questions, but each person should write and submit her own solution.

1. Consider the function $\text{DISJ}_n : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ defined as

$\mathrm{DISJ}_n : (S,T) \mapsto \left\{ \right.$	1	$S\cap T=\emptyset$
	0	otherwise

where the elements of $\{0, 1\}^n$ are identified with the subsets of $\{1, \ldots, n\}$ in the natural way. Show that $D(\text{DISJ}_n) = n + 1$.

2. Consider the function $\text{GTE}_n : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ defined as

$$\operatorname{GTE}_n: (x, y) \mapsto \left\{ \begin{array}{ccc} 1 & & x \ge y \\ 0 & & \text{otherwise} \end{array} \right.$$

where in $x \ge y$, the two strings x and y are interpreted as binary expansions of numbers in $[0, 2^{n+1} - 1]$. Show that $D(\text{GTE}_n) = n + 1$. Show that for every $\epsilon > 0$, we have $R_{\epsilon}(\text{GTE}_n) = O(\log^2 n)$.

- 3. Prove that if $f : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ has at least k distinct "rows", then $D(f) \ge \log \log k$.
- 4. Prove that for sufficiently large n, for more than 99% of the communication problems $f : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$, the characteristic matrix has rank at least $2^n - O(1)$ over the reals. In particular, the rank technique gives the tight lower-bound of n - O(1) for the deterministic communication complexity of random functions.
- 5. Identifying $\mathcal{P}(\mathbb{F}_2^n) \equiv \{0,1\}^{2^n}$, define the function $f: \{0,1\}^{2^n} \times \{0,1\}^{2^n} \to \{0,1\}$ as in the following. For subsets $A, B \subseteq \mathbb{F}_2^n$, f(A, B) = 1 if and only if A and B are orthogonal linear subspaces (over the field \mathbb{F}_2). Prove that $C^1(f) = 2^{\theta(n^2)}$ where $C^1(f)$ is the minimum number of monochromatic rectangles in a *cover* of 1-inputs.