We have $R_{1/n}^{prv}(EQ) = O(\log n)$ (compare to $D(EQ) = n + 1$). See [KN97, Example 3.5].

We have $R_{\epsilon}^{pub}(EQ) = O(\log 1/\epsilon) = O_\epsilon(1)$. See [KN97, Example 3.13].

The private coin and public coin complexity measures are more or less equivalent:

Theorem 1 ([New91]). *For every f and $\delta, \epsilon > 0$, we have $R_{\epsilon + \delta}^{prv}(f) \leq R_{\epsilon}^{pub}(f) + O(\log n + \log 1/\delta)$.*

For the *nice* proof see [KN97, Theorem 3.14].

References

School of Computer Science, McGill University, Montréal, Canada

E-mail address: hatami@cs.mcgill.ca