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1. Introduction To Circuits

In 1949 Shannon proposed the size of Boolean circuits as a measure of computation difficulty
of a function. Circuits are closely related in computational power to Turing machines, and thus
they provide a nice framework for understanding the time complexity. On the other hand their
especially simple definition makes them amenable to various combinatorial, algebraic, and analytic
methods.

A burst of activity in circuit complexity exploded about 30 years ago with first exponential
lower bounds for some circuit models, like bounded depth circuits, monotone circuits, restricted
branching programs, etc. There has been quick progress made for about two decades, but soon
various barriers are discovered.

A Boolean circuit is a directed acyclic graph. The vertices of indegree 0 are called inputs, and
are labeled with a variable xi or with a constant 0 or 1. The vertices of indegree k > 0 are called
gates and are labeled with a Boolean function on k inputs. The indegree of a vertex is called its
fanin and its outdegree is called its fanout. The most standard circuits are restricted to have gates
∧, ∨, ¬. One of the nodes is designated the output node, and then the circuit represents a Boolean
function in a natural way. The size of a circuit is its number of gates.

A simple counting argument establishes the following strong lower-bound. Roughly speaking,
there are too many Boolean functions f : {0, 1}n → {0, 1} (there are 22

n
of those functions)

compared to the number of small circuits.

Theorem 1.1 (Muller 1956). Almost every Boolean function f : {0, 1}n → {0, 1} requires fanin 2
circuits of size Ω(2n/n). On the other hand every function f : {0, 1}n → {0, 1} can be computed by
a fanin 2 circuit of size O(2n/n)

Theorem 1.1 has a major shortcoming. It does not provide any explicit example of a function
which requires a large circuit. Also unfortunately it does not provide any example of a function
in NP that requires circuits of superpolynomial size. Despite the importance of lower bounds on
the circuit complexity, the best explicit known construction due to Blum 1984 provides a function
which requires finin 2 circuits of size 3n− o(n).

2. Bounded depth circuits

Considering our inability in proving lower bounds on the circuit complexity of explicit Boolean
functions, we need to impose strong restrictions on the circuits in order to be able to prove mean-
ingful lower bounds. We will restrict to bounded depth circuits. The first strong lower bounds for
bounded depth circuits were given by Ajtai (1983) and Furst, Saxe, Sipser (1984). They established
a superpolynomial lower bound for constant depth circuits computing the parity function. Later
Yao gave a sharper exponential lower bound. In 1987 Hastad further strengthened and simplified
this argument, and obtained near optimal bounds.
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Let us start by defining our constant depth circuits. As we mentioned earlier we are interested
in the model where we are restricted to gates ∧, ∨, ¬. Note that by De Morgan’s laws

¬(p1 ∨ . . . ∨ pk) = (¬p1) ∧ . . . ∧ (¬pk),
and

¬(p1 ∧ . . . ∧ pk) = (¬p1) ∨ . . . ∨ (¬pk),
we can assume that

• there are no ¬ gates in the circuit, and instead the inputs are either of the form xi or ¬xi
for variables xi, or constants 0 and 1.
• We shall consider circuits whose depths are much smaller than n, the number of inputs.

Hence we need to allow arbitrary fanin so that the circuit may access the entire input.
• We will assume that the circuits are of the special form where all ∧ and ∨ gates are organized

into alternating levels with edges only between adjacent levels. Note that any circuit can
be converted into this form without increasing the depth and by at most squaring the size
(why?).

These circuits are called alternating circuits. The depth of an alternating circuit is defined as
the distance from the output node to the input nodes. Let AC[d] denote the set of a all alternating
circuits of depth at most d.

The alternating circuits of depth 2 are particularly important. Note that because of the “alter-
nation” condition, there are two different types of depth 2 alternating circuits. They correspond to
conjunctive normal form and disjunctive normal form formulas.

Definition 2.1 (Conjunctive Normal Form, ∧ of ∨). A formula is in conjunctive normal form,
abbreviated to CNF, if it is a conjunction (i.e. ∨) of clauses, where a clause is a disjunction (i.e
∨) of literals (i.e. xi or ¬xi), where a literal and its negation cannot appear in the same clause

For example (x1 ∨ x2)∧ (¬x1 ∨ x2 ∨ x3) is a formula in conjunctive normal form. It corresponds
to an alternating circuit of depth 2 with 3 gates.

Definition 2.2 (Disjunctive Normal Form, ∨ of ∧). A formula is in disjunctive normal form,
abbreviated to DNF, if it is a disjunction (i.e. ∨) of conjunctive clauses (i.e ∨ of literals).

Consider a fixed point y = (y1, . . . , yn) ∈ {0, 1}n, and T = {i : yi = 1}. Note that the only
assignment that satisfies the clause (∧

i∈T
xi

)
∧

∧
i 6∈T
¬xi


is the assignment x := y. Hence given a Boolean function f : {0, 1}n → {0, 1}, for every point y
with f(y) = 1 we can create a clause which is satisfied only if x = y. By taking the ∨ of these
clauses we create a DNF formula that represents the function f .

Example 2.3. Consider the function f : {0, 1}2 → {0, 1} such that f(0, 0) = f(0, 1) = f(1, 1) = 1
and f(1, 0) = 0. Then the DNF

(¬x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) ∨ (x1 ∧ x2)
represents f .

By changing the role of 0’s and 1’s and ∧ and ∨, we can represent f in CNF. We conclude
the following observation which says that the depth 2 alternating circuits are powerful enough to
compute any Boolean function.
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Observation 2.4. Every function f : {0, 1}n → {0, 1} can be represented in both DNF and CNF
formulas using at most 2n clauses.

3. Hastad’s switching lemma

The basic idea of Ajtai (1983) and Furst, Saxe, Sipser (1984) for proving lower-bounds on bounded
depth AC circuits was to assign random values to a random subset of variables. This will simplify
a small size AC[d] circuit greatly. Consider a gate at level 1 (that is a gate directly connected to
inputs xi and ¬xi’s). Noting that the gate is either ∧ or ∨, if it has a large fanin, then there is
a high chance that a random assignment of values to a random subset of variables will determine
the value of the gate. Indeed an ∧ gate only needs one 0 input to be set to 0, and an ∨ gate only
needs one 1 on its inputs to be set to 1.

As we mentioned earlier Hastad further explored and these ideas, and obtained near optimal
bounds. The core of his proof is an important lemma known as switching lemma. It is a key tool
for proving lower bounds on the size of constant-depth Boolean circuits.

Definition 3.1. Let X = {x1, . . . , xn} be the input variables to a circuit C computing a function
f . A restriction ρ is an element in {0, 1, ∗}X .

A restriction ρ is interpreted as setting the variables assigned 0 or 1 and leaving variables those
assigned star. Under ρ we may simplify C by eliminating gates whose values become determined.
Call this the induced circuit Cρ computing the induced function fρ.

For a Boolean function f : {0, 1}n → {0, 1} let D(f) denote the smallest s ≥ 0 such that f can
be expressed as a DNF formula that satisfies the following two properties:

• Each clause has size at most s;
• The clauses all accept disjoint sets of points. I.e. there is no x ∈ {0, 1}n that satisfies more

than one clause.

Note that the construction following Definition 2.2 shows that always D(f) ≤ n.

Lemma 3.2 (Hastad’s switching lemma). Let f be given by a CNF formula where each clause has
size at most t. Choose a random restriction ρ by setting every variable independently to ∗ with
probability p, and to 0 and 1 each with probability 1−p

2 . Then

Pr[D(fρ) > s] ≤ (5pt)s.

Lecture 7

We are going to prove this lemma by induction. But for the induction to work one needs to
strengthen the statement:

Lemma 3.3 (Hastad’s switching lemma, stronger version). Let f be given by a CNF formula
where each clause has size at most t. Choose a random restriction ρ by setting every variable
independently to ∗ with probability p, and to 0 and 1 each with probability 1−p

2 . For every function
F : {0, 1}n → {0, 1}, we have

(1) Pr[D(fρ) > s|Fρ ≡ 1] ≤ (5pt)s.
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Proof. Set α := 5pt, and suppose that f = ∧mi=1Ci where Ci’s are clauses of size at most t. We
prove this statement by induction on m the number of clauses in f . If m = 0, then f ≡ 1 and the
lemma is obvious. For the induction step let us study what happens to C1, the first clause in the
circuit. First note that without loss of generality we can assume that there are no negated literals
in C1 and hence

C1 =
∨
i∈T

xi,

for a subset T ⊆ {1, . . . , n}. First note that to prove (1) it suffices to prove both

(2) Pr[D(fρ) > s|Fρ ≡ 1, ρT ∈ {0, ∗}T ] ≤ αs,

and

(3) Pr[D(fρ) > s|Fρ ≡ 1, ρT ∈ {0, ∗}T ] ≤ αs.

To prove (2) note that

L.H.S of (2) = Pr[D(fρ) > s | (F ∧ C1)ρ ≡ 1] = Pr[D((∧mi=2Ci)ρ) > s | (F ∧ C1)ρ ≡ 1] ≤ αs,

where in the last inequality we used the induction hypothesis. It remains to prove (3). Note that

if ρT = ~0, then fρ ≡ 0 and thus D(fρ) = 0. Hence

L.H.S of (3) =
∑
Y⊆T
Y 6=∅

Pr[D(fρ) > s, ρY = ~∗, ρT−Y = ~0 | Fρ ≡ 1, ρT ∈ {0, ∗}T ]

≤
∑
Y⊆T
Y 6=∅

Pr[ρY = ~∗, ρT−Y = ~0 | Fρ ≡ 1, ρT ∈ {0, ∗}T ]×

Pr[D(fρ) > s | Fρ ≡ 1, ρY = ~∗, ρT−Y = ~0, ρT ∈ {0, ∗}T ]

≤
∑
Y⊆T
Y 6=∅

Pr
[
ρY = ~∗

∣∣Fρ ≡ 1, ρT ∈ {0, ∗}T
]
× Pr

[
D(fρ) > s

∣∣∣Fρ ≡ 1, ρY = ~∗, ρT−Y = ~0
]
.(4)

Observation 1 : Since setting variables in Y to ∗ cannot increase the probability that Fρ ≡ 1, we
have

Pr[Fρ ≡ 1 | ρY = ~∗, ρT ∈ {0, ∗}T ] ≤ Pr[Fρ ≡ 1 | ρT ∈ {0, ∗}T ],

which using the formula Pr[A|B]Pr[B] = Pr[A ∧B] implies that

Pr[ρY = ~∗ | Fρ ≡ 1, ρT ∈ {0, ∗}T ] ≤ Pr[ρY = ~∗ | ρT ∈ {0, ∗}T ] =

(
2p

1 + p

)|Y |
≤ (2p)|Y |.

Observation 2 : Also defining G : {0, 1} → {0, 1} as

G : x 7→
{

0 xT\Y 6= ~0

F (x) xT\Y = ~0,
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note that by induction hypothesis,

Pr[D(fρ) > s | Fρ ≡ 1, ρY = ~∗, ρT−Y = ~0]

≤ Pr
[
∀σ ∈ {0, 1}|Y |, D(fσρY ) > s− |Y |

∣∣∣ Fρ ≡ 1, ρT−Y = ~0
]

≤
∑

σ∈{0,1}|Y |
Pr[D(fσρY ) > s− |Y | | Gρ ≡ 1]

≤
∑

σ∈{0,1}|Y |
αs−|Y | ≤ 2|Y |αs−|Y |.

Combining the two observations with (4), we finish the proof:

L.H.S of (3) ≤
∑
Y⊆T
Y 6=∅

2|Y |αs−|Y |(2p)|Y | = αs
∑
Y⊆T
Y 6=∅

(
4p

α

)|Y |
≤ αs.

�

Remark 3.4. Since the negation of a CNF is a DNF and vice versa, the switching lemma can be
used to convert a DNF formula with clauses of size at most t to a CNF with clauses of size at most
s in the same way as Lemma 3.3. However the statement that “the (conjunctive) clauses in the
obtained DNF accept different points” now becomes that “the (disjunctive) clauses in the obtained
CNF reject different points”.

Corollary 3.5 (Linial, Mansour, Nisan 1993). Let f be a Boolean function computed by an AC
circuit of size M and depth d whose output gate is ∧. Choose a random restriction ρ by setting
every variable independently to ∗ with probability p = 1

10dsd−1 , and to 0 and 1 each with probability
1−p
2 . Then

Pr[D(fρ) > s] ≤M2−s.

Proof. We view the restriction ρ as obtained by first having a random restriction ρ0 with Pr[∗] =
1/10, and then d − 1 consecutive restrictions ρ1, . . . , ρd−1 each with Pr[∗] = 1

10s . With high
probability, after the restriction ρ0, at the bottom level of the circuit all fanins are at most s. To
see this, consider two cases for each gate at the bottom level of the original circuit:

(1) The original fanin is at least 2s. In this case, the probability that the gate was not eliminated
by ρ0, that is, that no input to this gate got assigned a 1 (assuming without loss of generality
that the bottom level is an ∨ level) is at most (0.55)2s < 2−s.

(2) The original fanin is at most 2s. In this case, the probability that at least s inputs got

assigned a ∗ by ρ0 is at most
(
2s
s

)
(1/10)s ≤ 2−s.

Thus, the probability of failure after the first restriction is at most m12
−s, where m1 is the

number of gates at the bottom level.
We now apply the next d − 2 restrictions, each with Pr[∗] = 1

10s . After each of these, we use
Hastad’s switching lemma (see Remark 3.4) to convert the lower two levels from CNF to DNF (or
vice versa), and collapse the second and third levels (from the bottom) to one level, reducing the
depth by one. For each gate of distance two from the inputs, the probability that it corresponds to
a function g with D(gρi) > s, is bounded by (5 1

10ss)
s ≤ 2−s. The probability that some gate fails

to satisfy the desired property is no more than mi2
−s, where mi is the number of gates at level i.

Since the top gate is ∧, after these d − 2 stages we are left with a CNF formula of bottom fanin
at most s. We now apply the last restriction and by switching lemma we get a function fρ with
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D(fρ) ≥ s. The probability of failure at this stage is at most 2−s. To compute the total probability
of failure, we observe that each gate of the original circuit contributed 2−s probability of failure
exactly once. �

Lecture 8

Recall that the characters of Zn2 are χS : x 7→ (−1)
∑

i∈S xi for S ⊆ [n]. So in this notation, the

Fourier expansion of f : Zn2 → C is f =
∑

S⊆[n] f̂(S)χS . We think of |S| as the “frequency” of the

character χS . This corresponds to the fact that when |S| is small, χS is more stable under local
changes (e.g. change of one random coordinate).

Remark 3.6. Note that χS has two important properties:

• χS(x) depends only on the coordinates in S. That is χS(x) = χS(xS).

• For every i ∈ [n] and x[n]\{i} ∈ Z[n]\{i}
2 , we have

Exi [χS(x)] =

{
0 i ∈ S
1 y 6∈ S

The Fourier degree of a function f : Zn2 → C, denoted by deg(f), is the size of the largest S such

that f̂(S) 6= 0. For a positive integer k, and a function f : Zn2 → C, we introduce the following
notations:

f=k =
∑

S:|S|≤k

f̂(S)χS .

Also f≤k, f≥k, f<k and f>k are defined similarly. Note that by Parseval identity we can prove

‖f‖22 =
n∑
k=0

‖f=k‖22,

and similar identities.

Lemma 3.7. Let f be the indicator function of a restriction ρ ∈ {0, 1, ∗}n. Then deg(f) is at most
the number of non-∗ coordinates of ρ.

Remark 3.8. Equivalently:

• the degree of the indicator function of a subcube of the hypercube {0, 1}n is at most its
codimension.
• if f can be expressed as an ∧ clause if size at most k, then deg(f) ≤ k.

Proof of Lemma 3.7. Let T denote the set of fixed (non-∗) coordinates by ρ. Note that f depends
on the coordinates in T , that is f(x) = f(xT ). Hence if there exists i ∈ S \ T , then by Remark 3.6
we have

f̂(S) = Ef(x)χS(x) = Ex[n]\{i} [Exi [f(xT )χS(x)]] = Ex[n]\{i} [f(xT ) [ExiχS(x)]] = 0.

We conclude that f̂(S) = 0 if S 6⊆ T . Hence deg(f) ≤ |T |. �
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Corollary 3.9. Let f be a Boolean function computed by an AC circuit of size M and depth
d. Choose a random restriction ρ by setting every variable independently to ∗ with probability
p = 1

10dsd−1 , and to 0 and 1 each with probability 1−p
2 . Then

Pr[deg(fρ) > s] ≤M2−s.

Proof. Since deg(g) = deg(1 − g) for every function g, we can assume that the output gate of
the circuit computing f is ∨ (otherwise we replace f with 1 − f and negate the circuit). Now by
switching lemma with probability at least 1−M2−s, we have fρ = ∨mi=1Ci for ∧ clauses C1, . . . , Cm
each of size at most s, such that the clauses all accept disjoint sets of points (i.e. no x ∈ {0, 1}n
satisfies more than one clause). By the latter property we can write fρ =

∑m
i=1Ci where here we are

identifying clauses with the functions represented by them. By Lemma 3.7, we know deg(Ci) ≤ s
for all 1 ≤ i ≤ m. Hence the degree of their sum is also at most s. We conclude

Pr[deg(fρ) > s] ≤M2−s.

�

Now we are at the point to prove the main theorem of this section.

Theorem 3.10 (Linial, Mansour, Nisan). Let f be a Boolean function computed by an AC circuit
of depth d and size M , and let t be any integer. Then∑

|S|>t

|f̂(S)|2 ≤ 2M2t
−1/d/20.

Proof. Consider a random restriction ρ ∈ {0, 1, ∗}n with Pr[∗] = p ≤ 1
10dkd−1 for a value of k and

s to be determined later. We sample ρ in two steps. First we pick T ⊆ [n] corresponding to the
positions that are not assigned a ∗. Then we pick xT ∈ {0, 1}T uniformly at random, and ρ is
defined as ρ := (xT ,~∗). Set fxT := fρ = f(xT , ·). Since χS(x) =

∏
i∈S(−1)xi , we can decompose it

as

χS(x) = χS∩T (xT )χS\T (xT ).

Now since

f(x) =
∑
S⊆[n]

f̂(S)χS(x) =
∑
S⊆[n]

f̂(S)χS∩T (xT )χS\T (xT ) =
∑
A⊆T

∑
B⊆T

f̂(A ∪B)χB(xT )

χA(xT ),

we have

f̂xT (A) =
∑
B⊆T

f̂(A ∪B)χB(xT ),

for every A ⊆ T . Hence by Parseval identity

ExT
∣∣∣f̂xT (A)

∣∣∣2 =
∑
B⊆T
|f̂(A ∪B)|2,

which shows that

ExT
∥∥∥f>kxT ∥∥∥22 = ExT

∑
A⊆T
|A|>k

∣∣∣f̂xT (A)
∣∣∣2 =

∑
A⊆T
|A|>k

∑
B⊆T
|f̂(A ∪B)|2 =

∑
S:|S∩T |>k

|f̂(S)|2
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Now we use the randomness in T . Since f>kxT = 0 if deg(fρ) ≤ k, and that always ‖f>kxT ‖
2
2 ≤

‖fxT ‖22 ≤ 1, we have

(5) ET

 ∑
S:|S∩T |>k

|f̂(S)|2
 = ETExT

∥∥∥f>kxT ∥∥∥22 = Eρ
∥∥∥f>kρ ∥∥∥2

2
≤ Pr[deg(fρ) > k] ≤M2−k,

where the last inequality follows from the switching lemma (recall that we chose Pr[∗] = p ≤
1

10dkd−1 ). Also we can bound the left-hand of (5) from below:

L.H.S. of (5) ≥
∑
|S|>t

Pr[|S ∩ T | > k]|f̂(S)|2

Taking p = 1
10t(d−1)/d and k = t1/d/20, we satisfy p ≤ 1

10dkd−1 , and by Chernoff bound for |S| > t,

the probability of |S ∩ T | > k = pt/2 is at least 1− 2e
−pt
12 ≥ 1

2 . Hence by (5), we have∑
S:|S|>t

1

2
|f̂(S)|2 ≤M2−t

1/d/20.

�

Lecture 9

Taking g = f≤t, Theorem 3.10 shows that ‖f − g‖22 ≤ 2M2t
−1/d/20. In other words circuits of

low depth and small size can be approximated by functions of low degree in the L2 norm. The next
theorem shows a different type of approximating such functions with a low degree function.

Theorem 3.11 (Razborov 87, Smolensky 87). Let f : {0, 1}n → {0, 1} be computed by a circuit of
depth d and size M . For any s, there is a degree r ≤ (s logM)d function g such that

Pr[f(x) 6= g(x)] ≤
(

1− 1

2e

)s
M.

Proof. The function g is constructed in an inductive way. We will show how to make a step with
an ∧ gate. Since the whole construction is symmetric with respect to 0 and 1, the step also holds
for an ∨ gate. Let

f = ∧ki=1fi

where k < M . For convenience, let us assume that k = 2` is a power of 2. We take a collection of
t := s logM random Poisson subsets of {1, . . . , k}: at least s of each of the p = 2−1, 2−2, . . . , 2−` =
1/k. Denote the sets by S1, . . . , St. In addition, we make sure to include {1, . . . , k} as one of the
sets. Let g1, . . . , gk be the approximating functions for f1, . . . , fk provided by the previous inductive
step. We set

g :=
t∏
i=1

(1− |Sj |+
∑
j∈Si

gj).
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By the induction assumption, the degrees of gj are ≤ (s logm)d−1, hence the degree of f is bounded

by t(s logm)d−1 ≤ (s logm)d. Next we bound the probability of f(x) 6= g(x) conditioned on the
event that all of the inputs f1, . . . , fk are calculated correctly. We have

Pr[f(x) 6= g(x)|gj = fj for all j] = Pr

 t∏
i=1

1− |Sj |+
∑
j∈Si

fj

 6= k∏
j=1

fj

 .
To bound this we fix a vector of specific values f1(x), . . . , fk(x) and calculate the probability of an
error over the possible choices of the random sets Si. Note that if all the fj(x)’s are 1 then the
value of f(x) = 1 is calculated correctly with probability 1. Suppose that f(x) = 0 (and thus at
least one of the fj ’s is 0). Let 1 ≤ z ≤ k be the number of zeros among f1(x), . . . , fk(x), and α
be such that 2α ≤ z < 2α+1. Let S be a random Poisson set with p = 2−α−1. Our approximation
will be correct if S hits exactly one 0 among the z zeros of f1(x), . . . , fk(x). The probability of this
event is exactly

zp(1− p)z−1 ≥ 1

2
(1− p)1/p−1 > 1

2e
.

Hence the probability of being wrong after s such sets are being chosen is bounded by (1− 1
2e)

s and

Pr

 t∏
i=1

(1− |Sj |+
∑
j∈Si

fj) 6=
k∏
j=1

fj

 < (1− 1

2e

)s
.

By making the same probabilistic argument at every node, by union bound we conclude that the
probability that an error happens is at most M

(
1− 1

2e

)s
. �
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