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1. Linearity test

Blum, Luby, and Rubinfeld [1] made a beautiful observation that given a function f : Zn2 → Z2,
it is possible to inquire the value of f on a few random points, and accordingly probabilistically
distinguish between the case that f is a linear function and the case that f has to be modified
on at least ε > 0 fraction of points to become a linear function. Inspired by this observation,
Rubinfeld and Sudan [3] defined the concept of property testing which is now a major area of
research in theoretical computer science. Roughly speaking to test a function for a property means
to examine the value of the function on a few random points, and accordingly (probabilistically)
distinguish between the case that the function has the property and the case that it is not too
close to any function with that property. Interestingly and to some extent surprisingly these tests
exist for various basic properties. The first substantial investigation of property testing occurred
in Goldreich, Goldwasser, and Ron [2] who showed that several natural combinatorial properties
are testable. Since then there has been a significant amount of research on classifying the testable
properties in combinatorial and algebraic settings.

In this section, we will state and analyze the BLR linearity test. We start by formally defining
a linear function.

Definition 1.1. A function f : Zn2 → Z2 is called linear if f(x+y) = f(x)+f(y) for all x, y ∈ Zn2 .

Consider ε, δ > 0. Given a function f : Zn2 → Z2, we want to query the value of f on few points
to distinguish correctly with probability at least 1− δ between the following two cases

(1) f is linear.
(2) f is ε-far from every linear function. I.e. for every linear g : Zn2 → Z2,

Pr[f(x) 6= g(x)] ≥ ε.

In order to apply Fourier analysis, we need the range of f to be C rather than Z2. To achieve
this we can compose f with an injective homomorphism from Z2 to C (which is basically χ1 : x→
(−1)x, the only non-principal character of Z2). In other words f is linear if and only if (−1)f is

multiplicative (i.e. (−1)f(x+y) = (−1)f(x)(−1)f(y)) which is equivalent to being a character of Zn2 .
So linearity test is can be reformulated as “character test”:

Consider ε, δ > 0. Given a function f : Zn2 → {−1, 1}, we want to query the value of f on few
points to distinguish correctly with probability at least 1− δ between the following two cases

(1) f is a character.
(2) f is ε-far from every character. I.e. for every a ∈ Zn2 ,

Pr[f(x) 6= χa(x)] ≥ ε.

Now let us state the BLR test.
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Blum, Luby, and Rubinfeld’s linearity test:

• Set N = d ln δ
ln(1−ε)e.

• For i = 1, . . . , N
• Pick two random points x, y ∈ Zn2 .
• If f(x)f(y) 6= f(x+ y), then Reject.
• Accept.

1.1. Analysis of the BLR test. First note that if f is a character then the BLR test always
succeeds, that is, it never rejects a character. The bulk of the analysis lies in proving that if f is
ε-far from every character, then f is rejected with probability at least 1− δ.

Consider a character χa, and note that

Pr[f(x) 6= χa(x)] =
1

2
− 1

2
E[f(x)χa(x)] =

1

2
− 1

2
f̂(a).

So if f is ε-far from every character, then

ε ≤ 1

2
− 1

2
max
a

f̂(a),

or equivalently

(1) max
a

f̂(a) ≤ 1− 2ε.

Now let us analyze the probability that f is not rejected in an iteration of the for-loop in the
BLR algorithm. Note that

Prx,y[f(x)f(y) = f(x+ y)] = Prx,y[f(x)f(y)f(x+ y) = 1] =
1

2
+

1

2
E[f(x)f(y)f(x+ y)].

Replacing f with its Fourier expansion, we get

E[f(x)f(y)f(x+ y)] = E

∑
a,b,c

f̂(a)f̂(b)f̂(c)χa(x)χb(y)χc(x+ y)


=

∑
a,b,c

f̂(a)f̂(b)f̂(c)Ex[χa+c(x)]Ey[χa+b(y)].

Note that a+ c = 0 if and only if a = c, and thus (see Lemma 1.2 from Lecture 2),

E[χa+c(x)] =

{
1 a = c
0 a 6= c

Similarly

E[χb+c(y)] =

{
1 b = c
0 a 6= c

Hence
E[f(x)f(y)f(x+ y)] =

∑
a

f̂(a)3,

which shows that

(2) Prx,y[f(x)f(y) = f(x+ y)] =
1

2
+

1

2

∑
a

f̂(a)3 ≤ 1

2
+

1

2

(
max
a

f̂(a)
)∑

a

f̂(a)2.

By the Parseval identity ∑
a∈G

f̂(a)2 = ‖f‖22 = 1.
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So

(3) Prx,y[f(x)f(y) = f(x+ y)] ≤ 1

2
+

1

2
max
a

f̂(a).

Now to finish the proof note that by (1) and (3) if f is ε-far from every character, then

Prx,y[f(x)f(y) = f(x+ y)] ≤ 1− ε.

Thus the probability that BLR makes a mistake and accepts f is at most (1−ε)N = (1−ε)d
ln δ

ln(1−ε) e ≤
δ.

2. Pseudorandomness

The concept of pseudo-randomness is extremely important to theoretical computer science and
many areas of mathematics. Pseudo-randomness refers to the property of behaving similar to a
typical random structure or process in a certain specified way. For example, a random sequence of
zeros and ones typically have roughly the same number of zeros and ones. So any zero-one sequence
which has roughly the same number of zeros and ones is pseudo-random in this sense. However,
even for this very weak notion of pseudo-randomness, there is a sequence such that establishing its
pseudo-random behavior is one of the most notorious open problems of mathematics.

Let us be more precise here. Consider a sequence a = (a1, a2, a3, . . .) where each ai is chosen
randomly and independently from the set {−1, 0, 1}. Fix an arbitrary ε > 0. For every n ≥ 1,
let Sn(a) = |

∑n
i=1 ai| be the absolute value of the sum of the first n elements of the sequence. It

follows from the Chernoff bound (See Lecture 1, Section 4) that

(4) Pr[|Sn(a)| ≥ n
1
2
+ε] ≤ 2e−

n2ε

3 .

Then it follows from the Borel-Cantelli theorem (See Lecture 1, Theorem 2.8) that with probability
1, we have

(5) Sn(a) = O(n
1
2
+ε).

Recall that the Möbius function µ : N→ {−1, 0, 1} is defined as

µ(n) =

{
0 p2|n for some prime p;
(−1)k n = p1 . . . pk for distinct primes p1, . . . , pk.

Then the famous Riemann hypothesis conjecture is equivalent to saying that the Möbius function

is pseudo-random in the sense of (5). That is, Sn(µ) = O(n
1
2
+ε) for every ε > 0.

For a notion of pseudo-randomness to be useful, it must imply that a pseudo-random structure
behaves similar to a random structure in various ways (not just what’s required in the definition of
the notion). For example, this is the case with the Riemann hypothesis conjecture. If it is true, it
would imply that the set of primes behave similar to certain random sets in various different ways.
This is exactly where the importance of the conjecture lies. It would enable us to settle various
important conjectures about the prime numbers.

3. Fourier Uniformity

In this section we study one of the important notions of the pseudo-randomness called Fourier
uniformity. Consider the group G = Zn2 and a random subset A ⊆ Zn2 (equivalently a random
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function f : {0, 1}2 → {0, 1}). By Hoeffding’s Inequality (See Lecture 1, Section 4), for a ∈ Zn2
with a 6= 0, we have

Pr
[
|1̂A(a)| > α

]
= Pr

[∣∣∣∣∣∑
x∈G

1A(x)χa(x)

∣∣∣∣∣ > α|G|

]
≤ 2e

−α2|G|2
2|G| = 2e−α

22n−1
.

Then the union bound implies that

Pr

[
max
a6=0
|1̂A(a)| > α

]
≤ 2n+1e−α

22n−1
.

By setting α = 2−n/2
√

2n, we have

(6) Pr

[
max
a6=0
|1̂A(a)| > 2−n/2

√
2n

]
= on→∞(1).

So typically all non-principal Fourier coefficients of a random subset of Zn2 have smaller magnitudes

than 2−n/2
√

2n. Note that 2−n/2
√

2n is quite small. Indeed by Parseval’s identity, for any arbitrary
A ⊆ G with 0 < |A|/|G| = c < 1 where c is a fixed constant, we have

c = ‖1A‖22 =
∑
a∈G
|1̂A(a)|2 = |1̂A(0)|2 +

∑
a6=0

|1̂A(a)|2 = c2 +
∑
a6=0

|1̂A(a)|2

which shows that

max
a6=0
|1̂A(a)| ≥ 2−n/2c(1− c).

Then our upper bound (6) of 2−n/2
√

2n for the maximum non-principal Fourier coefficient of a

random A is not very far from the lower bound 2−n/2c(1− c).
We established that typically all non-principal Fourier coefficients of a random subset of G ⊆ Zn2

are of small magnitude. This fact can be easily generalized to all finite Abelian groups. Inspired
by this, we would like to to call a subset A ⊆ G pseudo-random if all of its non-principal Fourier
coefficients are of small magnitude.

Lecture 5

It is more constructive to formalize this in terms of the U2 norm.

Definition 3.1. Let G be a finite Abelian group, and f : G→ C be a function. The U2 norm of f
is defined as

(7) ‖f‖U2 =
(
Ef(x)f(x+ y)f(x+ z)f(x+ y + z)

)1/4
,

where x, y, z are random elements of G.

We need to establish that the U2 norm is actually a norm. Note that a priori it is not even clear
that the expected value in the right-hand side of (7) is a non-negative real number. Replacing f
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by its Fourier expansion and expanding, we have

‖f‖4U2 = Ef(x)f(x+ y)f(x+ z)f(x+ y + z)

=
∑
a,b,c,d

f̂(a)f̂(b)f̂(c)f̂(d)E [χa(x)χ−b(x+ y)χ−c(x+ z)χd(x+ y + z)]

=
∑
a,b,c,d

f̂(a)f̂(b)f̂(c)f̂(d)E [χa−b−c+d(x)χ−b+d(y)χ−c+d(z)] .

Since

E [χa−b−c+d(x)χ−b+d(y)χ−c+d(z)] =

{
1 a− b− c+ d = 0,−b+ d = 0,−c+ d = 0;
0 otherwise

=

{
1 a = b = c = d;
0 otherwise,

we conclude that ‖f‖4U2 =
∑

a∈G |f̂(a)|4 which in turn implies

(8) ‖f‖U2 =

(∑
a∈G
|f̂(a)|4

)1/4

=
∥∥∥f̂∥∥∥

4
= ‖f ∗ f‖1/22 .

So U2 norm is nothing but the L4 norm of the Fourier transform of f .

Exercise 3.2. Prove the identity ‖f‖U2 = ‖f ∗ f‖1/22 directly without using the Fourier expansion
of f .

Now that we introduced the U2 norms we can define the relevant notion of pseudo-randomness
called Fourier uniformity (or uniformity for short).

Definition 3.3. A function f : G→ C is called δ-uniform if ‖f‖U2 ≤ δ. A subset A ⊆ G is called
δ-uniform if and only if 1A − E1A is δ-uniform.

How does this notion of uniformity relate to our discussion about the maximum non-principal
Fourier coefficient? The following simple lemma relates the U2 norm to the largest Fourier coefficient
of f .

Lemma 3.4. Let G be a finite Abelian group, and f : G→ C satisfy |f | ≤ 1. Then

‖f̂‖∞ ≤ ‖f‖U2 ≤
√
‖f̂‖∞.

Proof. By (8)

‖f‖4U2 =
∑
a∈G
|f̂(a)|4 ≥ max

a∈G
|f̂(a)|4 = ‖f̂‖4,

which establishes the first inequality. To prove the second inequality, note that by the Parseval

identity
∑

a∈G |f̂(a)|2 = ‖f‖2 ≤ 1. Hence

‖f‖4U2 =
∑
a∈G
|f̂(a)|4 ≤

(
max
a∈G
|f̂(a)|2

)∑
a∈G
|f̂(a)|2 ≤ max

a∈G
|f̂(a)|2 = ‖f̂‖2∞.

�
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If A ⊆ G, then f = 1A − E1A =
∑

a6=0 1̂A(a)χa satisfies the condition |f | ≤ 1 of Lemma 3.4.
Hence A is uniform if and only if all non-principal Fourier coefficients of 1A are of small magnitude.
Note that this is a proper notion of pseudo-randomness in the sense that random subsets of G are
typically very uniform. For example (6) shows that with high probability a random subset of Zn2 is

2−n/4(2n)1/4-uniform.

3.1. Testing Uniformity. The averages similar to Ef(x)f(x+ y)f(x+ z)f(x+y+z) appear quite
naturally in the area of algebraic property testing. It is possible to estimate them by randomly and
independently selecting a number of random points and computing the corresponding empirical
average. For example, a second moment argument (Lemma 4.2, Lecture 1) implies the following
observation about the U2 norm.

Lemma 3.5. Let G be a finite Abelian group, and f : G → C satisfy |f | ≤ 1. Suppose that
x1, . . . , xN , y1, . . . , yN , z1, . . . , zN ∈ G are chosen independently uniformly at random. Then denot-
ing

η =
1

N

N∑
i=1

f(xi)f(xi + yi)f(xi + zi)f(xi + yi + zi),

we have for every ε > 0,

Pr[
∣∣‖f‖4U2 − η

∣∣ > ε] ≤ 1

Nε2
= oN→∞(1).

So from the point of view of the property testing, by Lemma 3.4 it is possible to distinguish

between the following two cases: ‖f̂‖∞ is tiny vs ‖f̂‖∞ is non-negligible.

3.2. 3-term Arithmetic Progressions. As we mentioned earlier for a notion of pseudo-randomness
to be useful, it must imply that a pseudo-random structure behaves similar to a random structure
in various ways. To illustrate the usefulness of δ-uniformity, let us mention one example.

Define t3(A) the density of 3-term arithmetic progressions in a set A ⊆ ZN as the probability
that x, x+ y, x+ 2y ∈ A for randomly chosen x, y ∈ ZN . Note that

t3(A) = Ex,y1A(x)1A(x+ y)1A(x+ 2y)(9)

=
∑
a,b,c

1̂A(a)1̂A(b)1̂A(c)E[χa(x)χb(x+ y)χc(x+ 2y)](10)

=
∑
a,b,c

1̂A(a)1̂A(b)1̂A(c)E[χa+b+c(x)χb+2c(y)].(11)

Since

E [χa+b+c(x)χb+2c(y)] =

{
1 a+ b+ c = 0, b+ 2c = 0;
0 otherwise

=

{
1 a = b = −2c;
0 otherwise,

we get

t3(A) =
∑
c

1̂A(c)21̂A(−2c) = 1̂A(0)3 +
∑
c 6=0

1̂A(c)21̂A(−2c).
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Denoting α = 1̂A(0) = |A|/N , we conclude that

∣∣t3(A)− α3
∣∣ =

∣∣∣∣∣∣
∑
c 6=0

1̂A(c)21̂A(−2c)

∣∣∣∣∣∣ ≤
(

max
c 6=0
|1̂A(c)|

)∑
c 6=0

∣∣∣1̂A(c)1̂A(−2c)
∣∣∣

≤
(

max
c 6=0
|1̂A(c)|

)∑
c 6=0

|1̂A(c)|2
1/2∑

c 6=0

|1̂A(−2c)|2
1/2

≤
(

max
c 6=0
|1̂A(c)|

)∑
c 6=0

|1̂A(c)|2
1/2 (

2
∑
|1̂A(c)|2

)1/2
≤

(
max
c 6=0
|1̂A(c)|

)
‖1A‖2‖1A‖2 ≤

√
2 max
c6=0
|1̂A(c)|,

where the first inequality is by Cauchy-Schwarz, and the constant 2 appears in the third line because
−2c1 = −2c2 has at most two solutions in ZN (when N is a prime, this constant can be removed).

In particular when A is δ-uniform we have∣∣t3(A)− α3
∣∣ ≤ √2 max

c 6=0
|1̂A(c)| ≤

√
2‖1A − E[1A]‖U2 ≤

√
2δ.

This shows that a sufficiently uniform subset of ZN has the same density of 3-term arithmetic
progressions (which is α3) as a random subset of ZN with density α.

4. Probably approximately correct learning of Fourier Coefficients

In computational learning theory, probably approximately correct learning (PAC learning) is
a framework for mathematical analysis of machine learning. It was proposed in 1984 by Leslie
Valiant. We will not formally define the PAC learning. We just mention that unlike in property
testing, here we are not allowed to inquire the value of the function on the points that we want.
Instead the points are drawn from the domain according to a fixed distribution (usually uniform)
and we are only allowed to observe the value of the function on these points. Note that we do not
have any control over the distribution.

Consider a function f : G→ C which satisfies |f | ≤ 1. Suppose that points x are drawn from G

according to the uniform distribution, and for a fixed a ∈ G, we would like to estimate f̂(a). This
can be easily done by the following lemma which is a direct consequence of (Lemma 4.2, Lecture
1).

Lemma 4.1. Let G be a finite Abelian group, and f : G → C satisfy |f | ≤ 1. Suppose that
x1, . . . , xN ∈ G are chosen independently uniformly at random. Then denoting

η =
1

N

N∑
i=1

f(xi)χa(xi),

we have for every ε > 0,

Pr[
∣∣∣f̂(a)− η

∣∣∣ > ε] ≤ 1

Nε2
.

Remark 4.2. Applying Hoeffding’s Inequality instead of (Lemma 4.2, Lecture 1) would improve

the bound in Lemma 4.1 from 1
Nε2

to 2e
−N
2ε2 .
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