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HAMED HATAMI

In this lecture we are going to address a question related to expansion. We choose an element in
a product space and change each coordinate with a small probability. How large is the probability
that starting in a given small set A, the new point lands in another small set B? We are going to
prove a lower bound on this probability that depends on the relative densities of such sets. To this
end we introduce new tools concerning ‖·‖p with p < 1.

1. Noise and expansion

A ρ-correlated copy of an element x is obtained by changing some of its coordinates.

Definition 1.1. For 0 ≤ ρ ≤ 1, let x be a uniform random variable taking values in {0, 1}n, and
let y ∈ {0, 1}n be a random variable such that for each i independently

Pr[yi = xi] =
1

2
(1 + ρ),

or equivalently,

E(−1)xi(−1)yi = ρ.

In this case y is called a ρ-correlated copy of x.

Recall that the noise operator can be expressed in terms of a correlated copy of x,

Tρf(x) = Eyf(y).

Consider A,B ⊆ {0, 1}n with relative densities α, β. That is

|A|
2n

= α,
|B|
2n

= β.

Note that α, β are small but may not be constant. We are interested in the following question:
Pick a random x ∈ {0, 1}n and ρ-correlated copy y of x; How small can the following probability
can be?

Pr[x ∈ A, y ∈ B] = αPr[y ∈ B|x ∈ A].

If we want to minimize this probability intuitively we would like to choose two opposite corners
of the cube. The probability in this case can be upper-bounded using the following lemma whose
proof we omit.

Lemma 1.2. Fix a, b > 0 and let A,B ⊆ {0, 1}n be

A =
{
x|
∑

xi ≤
n

2
− a
√
n
}
,

B =
{
x|
∑

xi ≤
n

2
− b
√
n
}
.

These notes are scribed by Laura Eslava.
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Let x ∈ {0, 1}n be uniform and y be a correlated copy of x. Then we have the following upper bound

lim
n→∞

Pr[x ∈ A, y ∈ B] ≤
√

1− ρ2
2πa(ρa+ b)

e

{
−1

2
· a

2 + b2 + 2ρab

1− ρ2

}
The main term in the bound above is the exponential one and it involves the relative densities

of A and B as

lim
n→∞

|A|
2n

=
1√
2πa

e−a
2/2,

lim
n→∞

|B|
2n

=
1√
2πb

e−b
2/2.

We are going to establish a lower-bound in Theorem 2.5 that almost matches the upper-bound
of Lemma 1.2.

Let us first try the straight forward Fourier analytic approach that correspond to a spectral gap
method as the eigenvectors of Tρ are the characters because

TρχS = ρ|S|χS .

Therefore, the eigenvalues of Tρ are ρ|S|, the largest is 1, corresponding to the principal character
(S = ∅), and the second largest is ρ, recall ρ < 1. To compute the Fourier expansions, fix x and
average over y,

Pr[x ∈ A, y ∈ B] = E1A(x)1B(y) = E1A(x)Tρ1B(x).

We can use an spectral gap method, that is, to remove the first coefficient and bound the other
ones by the second largest, finally we use Cauchy-Schwarz to derive the following,∑

1̂A(S)1̂B(S)ρ|S| ≥ 1̂A(∅)1̂B(∅)− ρ
∑
S 6=∅

∣∣∣1̂A(S)1̂B(S)
∣∣∣

≥ αβ − ρ

∑
S 6=∅

∣∣∣1̂A(S)
∣∣∣2
1/2∑

S 6=∅

∣∣∣1̂A(S)
∣∣∣2
1/2

= αβ − ρ
√
α− α2

√
β − β2.

The last term is large and the bound is negative (and useless) unless ρ is very small. So we need
a deeper approach.

2. Reverse Bonami-Beckner

We are going to use “Lp-norms” for p < 1, and obtain a Reverse Bonami-Beckner inequality.
It is similar to the hypercontractivity theorem but the direction of the inequality is reversed and
applies to −∞ < q ≤ p < 1. Also unlike the original Bonami-Beckner inequality, it only applies to
non-negative functions. In fact all of the next 4 theorems and lemmas require the functions to be
non-negative.

Theorem 2.1 (Inverse Hölder Inequality). If f, g ≥ 0 are measurable functions with respect to a
measure space then

〈f, g〉 ≥ ‖f‖p‖g‖q,

where −∞ < q, p < 1 and 1
p + 1

q = 1.
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Remark 2.2. When p < 1, the function ‖·‖p is not a norm, and it is a notation to denote(∫
|f |p

)1/p

.

In fact if f, g ≥ 0 then the triangle inequality is reversed for −∞ < p < 1,

‖f + g‖p ≥ ‖f‖p + ‖g‖p.

To see this note that by Inverse Hölder Inequality

‖f + g‖pp =

∫
(f + g)p =

∫
(f + g)p−1f +

∫
(f + g)p−1g

≥
(∫

(f + g)p
) p−1

p

‖f‖p +

(∫
(f + g)p

) p−1
p

‖g‖p,

which simplifies to the desired inequality.

Theorem 2.3 (Reverse Bonami-Beckner inequality). Let f : {0, 1}n → R+, then

‖Tρf‖q ≥ ‖f‖p,

for 0 ≤ ρ ≤
√

p−1
q−1 and −∞ < q ≤ p < 1.

The proof is similar to the Bonami-Beckner inequality. First one proves it for the 1-dimensional
case and then induction establishes the general case.

Corollary 2.4. Let f, g : {0, 1}n → R+ and x ∈ {0, 1}n uniform and a ρ-correlated y copy of x,
then

Ef(x)g(y) ≥ ‖f‖p‖g‖q,

where 0 < ρ ≤
√

(1− p)(1− q) ≤ 1 and −∞ < q, p < 1.

Proof. Let p′ = p
1−p , so that p, p′ are conjugate exponents. We use the reverse Hölder’s inequality

and then apply the inverse Bonami-Beckner inequality,

Ef(x)g(y) = Ef(x)Tρg(x)

≥ ‖f‖p‖Tρg‖p′
≥ ‖f‖p‖g‖q,

where the last inequality requires 0 < ρ ≤
√

1−q
1−p′ =

√
(1− p)(1− q). �

Now we can prove the main theorem of the lecture, regarding the lower bound on the probability
that a ρ-correlated copy of a uniform element that is in A lands in B.

Theorem 2.5. Let A,B ⊆ {0, 1}n have relative densities

|A|
2n

= e−a
2/2 |B|

2n
= e−b

2/2,

and let x ∈ {0, 1}n be uniform and y be a ρ-correlated copy of x. Then

Pr[x ∈ A, y ∈ B] ≥ e
{
−1

2
· a

2 + b2 + 2ρab

1− ρ2

}
.
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Proof. Let p, q be such that ρ2 = (1− p)(1− q), by corollary 2.4 we have that

Pr[x ∈ A, y ∈ B] = E1A(x)1B(y) ≥ ‖1A‖p‖1B‖q.
Now our task is to optimize p so that the the R.H.S. is maximized. Note that the Lp norm can be
expressed in term of the relative density because we are dealing with an indicator function

‖1A‖p = e−a
2/2p ‖1B‖p = e−b

2/2q.

To simplify computations, write p = 1− ρr and q = 1− ρ
r with r > 0, where

r =
1− p
ρ

=
ρ

1− q
.

Then the optimal solution is achieved when

r =
b
a + ρ

1 + ρ ba
.

This gives the claimed lower bound as for the optimal value of r,

a2

p
+
b2

q
=
a2 + b2 + 2ρab

1− ρ2
.

�

We obtain the following corollary.

Corollary 2.6. Let A,B ⊆ {0, 1}n with relative densities α > 0 and ασ > 0 respectively, where
σ > 0. Let x ∈ {0, 1}n be uniform and y be a ρ-correlated copy of x. Then

Pr[x ∈ A, y ∈ B] ≥ αα(
√
σ+ρ)2/(1−ρ2).

In particular, if |A| = |B|, the this probability is at least α(1+ρ)/(1−ρ).

Another interesting corollary of the inverse Bonami-Beckner inequality is that we can measure
how flat Tρ can be, since we expect Tρ to smooth f . That is, we can bound Pr[Tρf(x) > 1− δ].

Theorem 2.7. Let f : {0, 1}n → [0, 1] with Ef = α. Then for any 0 < ρ < 1 and 0 ≤ ε ≤ 1 − α
we have

Pr[Tρf > 1− δ] < ε

provided that 0 ≤ δ < ερ
2/(1−ρ2)+O(κ), where κ =

√
α log(e/1−α)

1−ρ .

Proof. Define indicator functions

g : x→

{
1 if Tρf(x) > 1− δ
0 otherwise

h : x→

{
1 if f(x) > b

0 otherwise,

where b = 1
2(1 + α). We need to show that ε′ := Eg ≤ ε. By the first moment method,

α = Ef ≥ (1− Eh)b,

then

Eh > 1− α

b
=

1− α
1 + α

,
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and therefore support of h is not very small. Now, when g(x) = 1 we have Tρ(1− f(x)) ≤ δ, so

Tρ[(1− b)h(x)] < δ

and so

Tρ[h(x)] ≤ δ

1− b
.

Thus

(1) E[gTρh] ≤ δε′

1− b
=

2δε′

1− α
.

Meanwhile, By Corollary 2.6

(2) E[gTρh] ≥ ε′ · ε′
(
√
β+ρ)2

1−ρ2

where β = logEh
log ε′ . Now (1) and (2) together with our assumption on δ leads to the desired bound

ε′ ≤ ε. �

Lecture 13

In this lecture we define the Noise Stability of boolean function. We are interested in finding
the Boolean functions that have largest noise stability. It was conjectured by Subash Khot that
the majority function is the stablest Boolean function. The analogous statement in the Gaussian
setting was proved in 1983 by Borell. Recently Mossel, O’Donnell, Oleszkiewicz found a method
to deduce the discrete case from Borell’s result. In this lecture we introduce the basic notions of
gaussian space. This will give us an analogous setup. The proofs are going to be shown in the
following lecture.

We start with the definition of noise operator, this measures the proportion of elements x that
remains in the support of a function f when we add some noise to them.

Definition 2.8. For 0 ≤ ρ ≤ 1, the noise stability of f : {0, 1}n → R is

Sρ(f) := Ef(x)f(y),

where y is a ρ-correlated copy of x and x ∈ {0, 1}n is uniform.

Note that for fixed x, Ef(y) = Tρf(x), so we can look at Sρf as a correlation between f and
Tρf , then

Sρ(f) = Ef(x)Tρf(x) =
∑
S⊆[n]

ρ|S||f̂(S)|2.

Now, for a balanced function f : {0, 1}n → {0, 1} what is the largest possible value of Sρf(x)?

A first approach is to separate the principal coefficient and upper bound ρ|S| by ρ, so we get

Sρ(f) =
∑
S⊆[n]

ρ|S||f̂(S)|2

≤ |Ef |2 + ρ
∑
S 6=∅

|f̂(S)|2 =
1

4
+
ρ

4
,
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where in the last equality we used the assumption that f is balanced and boolean. On the other
hand, half-cubes achieve this upper bound, for example, if f(x) = x1, then the fourier expansion is

f =
1

2
+

1

2
χ{i},

and so

Sρ(f) =
1

4
+
ρ

4
.

But the influence of half-cubes is concentrated in one coordinate. So, if we assume that all the
influences are small, we overrule the simple case of half-cubes.

In contrast with the half-cubes where the fourier coefficients are concentrated in the first level,
the next theorem states that even when all the influences are small, if one looks at the levels above
d, the sum of the squared fourier coefficients is still large.

Theorem 2.9 (Bourgain 2000). If f : {0, 1}n → {0, 1} is balanced and Ii ≤ 10−d for all i ∈ [n],
then

‖f≥d‖22 =
∑
|S|≥d

|f̂(S)|2 ≥ d
−1/2−o

(√
ln ln d
ln d

)
,

which is d−1/2−o(1).

As an exercise, prove the following corollary of Theorem 2.9

Corollary 2.10. If f : {0, 1}n → {0, 1} is balanced and Ii(f) = 2−O(1/ε) for all i ∈ [n], then

S1−ε(f) ≤ 1

2
− ε1/2+o(1)

Note that this is a great improvement compared with the first bound, that would be 1
2 −

ε
4 .

However, this is not sharp as the majority function has an even larger noise stability and it is
conjecture that it achieves essentially the maximum noise stability among balanced functions. The
majority function Majn : {0, 1}n → {0, 1} is defined as

Majn : x→

{
1
∑
xi ≥ n/2

0
∑
xi < n/2.

Theorem 2.11. The limit as n tends to ∞ of the noise stability of the majority function is

lim
n→∞

Sρ(Majn) =
1

4
+

arccos ρ

2π
.

Theorem 2.12 (Majority is stablest). For 0 < ρ < 1, if f : {0, 1}n → {0, 1} is balanced and
Ii(f) ≤ ε for all i ∈ [n], then

Sρ(f) ≤ 1

4
+

arccos ρ

2π
+O

(
log log 1/ε

log 1/ε

)
.

Note that O
(
log log 1/ε
log 1/ε

)
= o(ε). This theorem together with the so called “unique games conjec-

ture” imply strong results about hardness of approximation.
For the proof of Theorem 2.12, we actually have to use geometry. The rest of the lecture we

will define gaussian random variables in Rn, state some of their basics properties and settle an
analogous setup for the noise operators. In the next lecture we will prove the analogue of Theorem
2.11 in Rn and then translate it back to the discrete case.
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Definition 2.13. The normal distribution on R is the probability distribution γ1 on R with density
function

e−x
2/2

√
2π

,

that is

γ1([a, b]) =

∫ b

a

e−x
2/2

√
2π

dx.

A random variable g with distribution γ1 is called a gaussian, these random variables have the
property that Eg = 0 and Eg2 = 1.

Definition 2.14. Let γn denote the corresponding product probability distribution on Rn. In other
words,

(3) γn({x ∈ Rn|ai ≤ xi ≤ bi}) =
n∏
i=1

γ1([ai, bi]).

The density function of γn is

Φn(x) =

(
1√
2π

)n
e
−‖x‖2

2 ,

that is, if A ∈ Rn, then γn(A) =
∫
A Φn(x)dx.

Remark 2.15. The way that we defined the gaussian measure on Rn as the product space in (3)
it is natural to expect that gaussians depend on the coordinates but they do not. The measure γn
is uniformly distributed in spheres centered at the origin; when one fixes a sphere, the function Φn

becomes constant and therefore independent of the coordinates.
In particular if g1, . . . , gn are i.i.d. gaussians and α, β ∈ Rn with ‖α‖2 = ‖β‖2, then the random

variables
α1g1,+ · · ·+ αngn and β1g1 + · · ·+ βngn,

have the same distribution. In particular,
∑
αigi has the same distribution as ‖α‖2g, where g is a

one dimensional gaussian.

Now we consider the characters of Zn2 in the gaussian space. Let S ⊆ [n], then we define

ωS : x 7→
∏
i∈S

xi.

Lemma 2.16. The functions ωS : (Rn, γn)→ R are orthonormal.

Proof. The inner product of any two function ωS , ωT can be express as the expected value of its
product with respect to γn, so

〈ωS , ωT 〉 =
∫
ωS(x)ωT (x)dγn(x) = EωS(g1, . . . , gn)ωS(g1, . . . , gn),

where gi are i.i.d. gaussians, so by independence

EωS(g1, . . . , gn)ωS(g1, . . . , gn) = E
∏
i∈S

gi
∏
i∈T

gi =

( ∏
i∈S∩T

Eg2i

) ∏
i∈S4T

Egi

 =

{
0 S4T 6= ∅
1 otherwise

Therefore, the inner product of any two of those functions is zero unless they are the same functions,
and the norm of all of them is 1. �

Remark 2.17. {ωS}S⊆[n] do not generate all of L2(Rn, γn) but one can extend them using the so
called Hermité polynomials to a basis for L2(Rn, γn).
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To define the noise stability we have to define what a ρ-correlated of a gaussian is:

Definition 2.18. Let 0 ≤ ρ ≤ 1, two gaussians g, h are ρ-correlated if

g = ρh+
√

1− ρ2g′,
where g′ is a gaussian independent of g, h.

Here g and h have ρ correlation. To see this use the definition of g to get

E(g(x)h(x)) = E[ρh2 +
√

1− ρ2hg′] = Eρ = ρ,

we again used that the expected value of a gaussian is zero and the second moment is 1. On the

other hand, the coefficients are chosen so that g is a gaussian, note that g = ρh +
√

1− ρ2g′ has
the same distribution as

(ρ2 +
√

1− ρ2)g′′ = g′′,

where g′′ is a gaussian. Now, we define the analogue of the “noise operator” for the functions on
the gaussian space.

Definition 2.19. Let 0 ≤ ρ ≤ 1, then the Ornestein-Uhlenbeck operator acting on L2(Rn, γn) is
defined as

Uρf(x) = Ef(y),

where y = ρx+
√

1− ρ2g is a ρ-correlated copy of x.

Lemma 2.20. We have UρωS = ρ|S|ωS .

Proof. For fixed xi’s we have

UρωS(x) = E
∏
i∈S

(ρxi +
√

1− ρ2gi) = ρ|S|
∏
i∈S

xi = ρ|S|ωS(x).

�

Finally, we get to define the noise stability for function on the guassian space.

Definition 2.21. The noise stability of f : (Rn, γn)→ R is defined as

Sρ(f) := E(fUρf) = Ef(x)f(y),

where x has distribution γn and y is a ρ-correlated copy of x.

The analogues of Theorem 2.11 and Theorem 2.12 in the setting of gaussians are respectively

Theorem 2.22. Let Majn : Rn → {0, 1} be defined as

Majn(x) =

{
1 if

∑
xi ≥ 0

0 if
∑
xi < 0

then, its noise stability is given by

Sρ(Majn) =
1

4
+

arccos ρ

2π
.

and

Theorem 2.23. If A ⊆ Rn satisfies γn(A) = 1/2, then

Sρ(1A) = Sρ(A) ≤ 1

4
+

arccos ρ

2π
.
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Note that unlike in Theorem 2.12, the previous theorem does not require any conditions on the
influences.
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