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Abstract—Weighted finite automata (WFA) can expressively
model functions defined over strings. However, a WFA is
inherently a linear model. In this paper, we propose a neural
network based nonlinear WFA model along with a learning
algorithm. Our learning algorithm performs a nonlinear de-
composition of the so-called Hankel matrix (using an encode-
decoder neural network) from which the transition operators
of the model are recovered. We assessed the performance of
the proposed model in a simulation study.

1. Introduction

Many tasks in natural language processing, computa-
tional biology, or reinforcement learning, rely on estimating
functions mapping sequences to real numbers. Weighted
finite automata (WFA) are finite state machines that al-
low one to succinctly represents such functions. WFA has
been widely used in many fields such as grammatical
parsing [Mohri and Pereira, 1998], sequence modeling and
prediction [Cortes et al., 2004] and bioinfomatics [Allauzen
et al., 2008]. A probabilistic WFA (PFA) is a WFA satisfying
some constraints and computes a probability distribution
over strings. PFA is expressively equivalent to Hidden
markov models (HMM) which have achieved success in
many tasks such as speech recognition [Gales and Young,
2008] and human activity recognition [Nazdbal and Artés-
Rodriguez, 2015]. Recently, the so-called spectral method
has been proposed as an alternative to EM based algorithms
to learn HMM [Hsu et al., 2009], WFA [Bailly et al., 2009],
predictive state representations [Boots et al., 2011], and
related models. Compared to EM, the spectral method has
the benefits of providing consistent estimators and reducing
computational complexity.

Neural networks date back to the 1950’s and have
recently led to state-of-art results in practical applica-
tions, among others in computer vision and reinforce-
ment learning. For example, deep convolutions neural net-
works [Krizhevsky et al., 2012] have pushed the boundary
of computer vision to a new level. Furthermore the deep Q
network architecture [Mnih et al., 2013], used as a function
approximator for the action value function in reinforcement
learning, has helped Al reach the level of professional
players in the game of go.
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In this paper, we propose a nonlinear WFA model based
on neural networks, along with a learning algorithm. This
model can be seen as an extension of dynamical recogniz-
ers [Moore, 1997] — which are in some sense a nonlinear
extension of deterministic finite automata — to the quan-
titative setting. In contrast with recurrent neural networks,
our learning algorithm does not rely on back-propagation
through time. Instead, akin to the spectral method for WFAs,
our learning algorithm performs a nonlinear factorization
of the so-called Hankel matrix, which is then leveraged to
recover the transition operators of the nonlinear WFA.

2. Preliminaries

We first introduce notions on weighted automata and the
spectral learning method.

Weighted finite automaton. Let 3* denote the set of strings
over a finite alphabet . Denote the empty word by A. A
weighted finite automaton (WFA) with k states is a tuple
A = (ag, 0o, {A,}) Where ag, e € R” are the initial
and final weight vector respectively, and A, € RF*¥ is
the transition matrix for each symbol 0 € 3. A WFA
computes a function f4 : ¥* — R defined for each word
T =212 Ty € XF by

fa(z) = agAx1A$2 A, Q.

By letting A, = A A, ---A, for any word z =
T1To T € X* we will often use the shorter notation
falz) = a(—)'—AIaOO. A WFA A with k states is minimal if
its number of states is minimal, i.e., any WFA B such that
fa = fp has at least k states. A function f : X* — R is
recognizable if it can be computed by a WFA. In this case
the rank of f is the number of states of a minimal WFA
computing f. If f is not recognizable we let rank(f) = oco.

Hankel matrix. The Hankel matrix Hy € R¥ *>" associ-
ated with a function f : ¥* — R is the bi-infinite matrix
with entries (Hy), , = f(uv) for all words u,v € ¥*. The
spectral learning algorithm for WFAs relies on the following
fundamental relation between the rank of f and the rank of
the Hankel matrix Hy [Carlyle and Paz, 1971, Fliess, 1974]:

Theorem 2.1. For any f : ¥* — R, rank(f) = rank(Hy).



In practice, one deals with finite sub-blocks of the Hankel
matrix. Given a basis B = (P, S), where P is a set of pre-
fixes and S is a set of suffixes, we define the Hankel matrix
Hp € RP*S. Among all possible basis, we are particularly
interested in the ones with the same rank as f. We say that
a basis is complete if rank(Hg) = rank(f) = rank(Hy).
Now, for an arbitrary basis B = (P, S), define its p-closure
as B’ = (P, S), where P’ = PUXU{A}. It turns out that a
Hankel matrix over a p-closed basis can be partitioned into
|Z]| + 1 blocks of the same size [Balle et al., 2014]:
B, = (R |1

where for each 0 € ¥ U {\} the matrix H, € RP*S is
defined by H, (u,v) = f(uowv).

Spectral learning. It is easy to see that the rank of the
Hankel matrix H; is upper bounded by the rank of f: if
A = {ag, 00, {As}) is @ WFA with k states computing f,
then H; admits the rank k factorization Hy = PS where
the matrices P € R¥ ** and S € RF¥*>" are defined by
P,.=ajA%and S., = A, for all u,v € ¥*. Also,
one can check that H, = PA,S for each ¢ € X. The
spectral learning algorithm relies on the non-trivial obser-
vation that this construction can be reversed: given any rank
k factorization Hy = PS, the WFA A = (o, 0o, {As })
defined by ag =Py, 0 =S.and A, = PTH,ST, is
a minimal WFA computing f [Balle et al., 2014, Lemma
4.1], where H, for o € ¥ U X\ denotes the finite matrices
defined above for a prefix closed complete basis B.

3. Introducing Non-Linearity in WFA

The WFA model assumes that the transition operators
A, are linear. It is natural to wonder whether this linear
assumption sometimes induces a too strong model bias.
Also, even for functions recognizable by linear WFAs, in-
troducing non-linearity can potentially reduce the number
of states. Consider the following example: given a WFA
A = (o, @00, {As}), the function (fa)? : u +— fa(u)?
is recognizable and can be computed by the WFA A’ =
(afy, al, {AL}) with o) = g ® ag, &y, = Qoo @ Qo
and A = A, ® A,, where ® denotes Kronecker product.
One can check that if rank(f4) = k, then rank(f4/) can be
as large as k2, but intuitively the true dimension of the model
is k using non-linearity'. These two observations motivate
us to introduce nonlinear WFAs.

3.1. Nonlinear Weighted Finite Automata

Let us now use the notation g to stress that a function g
may be nonlinear. We define a nonlinear WFA A of size k
as a tuple (oo, Gx, {Go}sex), Where ag € R* is a vector
of initial weights, G : R*¥ — RF is a transition function
for each o € ¥ and G : R¥ — R is a termination function.

1. By applying the spectral method on the component-wise square root
of the Hankel matrix of A’, one would recover the WFA A of rank k.

A nonlinear WFA A computes a function fi:3 =R
defined by

fa(2) = GA(Ga, (- Gy (G (@0)) - -))

for any word * = xyx9---2; € X*. This nonlinear
model can be seen as generalization of dynamical recog-
nizers [Moore, 1997] to the quantitative setting. Of course
some restrictions on the nonlinear functions (G, have to be
imposed in order to control the expressiveness of the model.
In this paper, we consider nonlinear functions computed by
multilayer perceptrons.

3.2. A Representation Learning Perspective on the
Spectral Algorithm

Before presenting our learning algorithm for nonlinear
WFAs, we first give some intuitions by showing how the
spectral method in the linear case can be interpreted as a
representation learning scheme. The spectral method can
be summarized as a two stage process consisting of a
factorization step and a regression step: first find a low
rank factorization of the Hankel matrix and then perform
regression to estimate the transition operators {A, },ex.

In the factorization step, the rank & factorization Hy =
PS can be seen as finding a low dimensional feature space
R* where each prefix u € P is mapped to a (row) feature
vector ¢(u) = P,,. € R¥, in such a way that ¢(u) encodes
all the information sufficient to predict the value f(uv) for
any suffix v € S: indeed f(uv) = ¢(u)S. ,. In this process,
we can view P and S as an encoder-decoder framework.
By applying the encoder P to the prefix u, we are able
to obtain a latent space embedding ¢(u) from which the
decoder S is able to recover the vector H, . € R® that
contains all the values computed by the WFA on wuv for
arbitrary suffixes v € S. In the probabilistic setting, this
vector would contain the probabilities of all suffixes after
observing u. Thus, with this framework in mind, it seems
natural to consider applying a nonlinear encoder-decoder
instead of the linear factorization.

For regression step, one recovers the matrices A, satis-
fying H, = PA,S. From our encoder-decoder perspective,
this can be seen as recovering the compositional mapping
A, satisfying ¢(uo) = ¢(u)A, for each o € X. This
provides us with another way of applying non-linearity:
assuming that the transition functions are nonlinear, we have
¢(uo) = G,(¢(u)), meaning that the compositional maps
allowing us to obtain the embedding of a word uo given
the embedding of the word u can now be nonlinear.

Going back to the problem of learning nonlinear WFAs,
suppose we have an encoder ¢p : R — RF and a decoder
¢s : RF — RS satisfying ¢s(¢p(u)) = u'H, for all
u € P, where u denotes the one-hot encoding of the prefix
u. This encoder-decoder framework ensures that there exists
a k-dimensional representation space for prefixes for which
the information encoded by ¢p is enough to predict any
computation after observing a given prefix. The task of
recovering the nonlinear compositional maps then consists in



Figure 1: Nonlinear factorization, where grey units indicat-
ing nonlinear units while white ones are linear units.

finding G, : R¥ — R* such that ¢5(Go(¢p(n))) = u'H,
for any prefix u € P.

3.3. Learning Nonlinear WFAs

By now we have given intuition on the motivations for
applying non-linearity in the factorization and regression
steps. Introducing non-linearity can be achieved in several
ways. In this paper, we will use neural networks due to their
strong power as function approximators and their ability to
discover relevant low-dimensional representation spaces.

Nonlinear factorization. As observed in the previous para-
graphs, incorporating non-linearity in the factorization step
can be achieved by finding an encoder ¢p(-) and a decoder
bs(+) satisfying ¢s(ép(x)) = x"H, for all x. To do this,
we propose the neural net model shown in Figure 1.

Assume Hy, € R™*"  the model is trained to map
random inputs x € R™ to x"H, € R". This is achieved
by minimizing the mean squared error between the true
value and the predicted value. Instead of linearly factorizing
the Hankel matrix, we use two neural nets: P-Net and S-
Net, whose hidden layer activation functions are nonlinear”.
Denote the nonlinear activation function by 6, and let A, B,
C, D be the weights matrices of the neural net shown in
Figure 1 (from left to right). The function f : R™ — R"
computed by the neural net can be written as

f=fsofp:x 0(6(xA)BC)D

where the encoder-decoder functions fp :R™ — R* and
fs : R* — R"™ are defined by fp(x) = 6(xA)B and
fs(x') = 0(x'C)D for all row vectors x € R™ x’ € R*.

If we let f, be the function represented by the Hankel
matrix Hy (i.e. fx(x) = x"Hy), we see that the network
is trained to minimize the /5 distance between f and f). It
is easy to check that if the activation function is linear, one
will exactly recover the rank factorization from the linear
case with P = AB and S = CD.

2. We use the (component-wise) tanh function in our experiments.

Tran-Net

Figure 2: Network for the transition functions (grey layer
indicates nonlinear units while white ones are linear).

Nonlinear regression. Given the encoder-decoder maps fs
and fp, we then move on to recovering the transition func-
tions. Recall that we wish to find G, : R* — R* for each o
such that the embedding ¢(uc) = fp(uo) can be obtained
by applying G, to ¢(u) for any ¢ € ¥ and any prefix
u (where uo denotes the one-hot encoding of wo). This
can be achieved by enforcing fs(G,(fp(u))) to be close to
the vector containing the true values f(uov) for all suffixes
v, i.e. by minimizing the distance between fs(G,(fp(u)))
and u' H, for all prefixes u. Using a neural network with
one hidden layer for the function G,, which we refer
to as Tran-Net, we obtain the neural network architecture
shown in Figure 2, where the P-Net and the S-Net are the
ones obtained from the previous factorization step. During
training, the weights of the P-Net and of the S-Net are not
updated and the weights of the Tran-Net are optimized to
minimize the squared error between x ' H, and the output
of the network for randomly generated inputs x € R™.
Let E;,F, be the two weights matrices in the Tran-net in
Figure 2 (from left to right). The function G, : R¥ — Rk
it computes is defined by G, (x) = F,0(E,x). If we let f,
be the function represented by the Hankel matrix H, (i.e.
f-(x) =x"H,), the network is trained to minimize the /o
distance between f, and fgo G, o fp.

Recovering the nonlinear WFA. Given the transition func-
tions G, obtained above, for the nonlinear WFA A we de-
fined, we still need to specify oy and G. From the encoder-
decoder point of view, the initial vector cyy is the embedding
of the empty word X\ obtained through the encoder ¢p and
the termination function G is the decoding function corre-
sponding to the suffix A. In particular, in the probabilistic
setting GG (u) can be seen as the probability of stopping
the computation and emitting the word u. Therefore, we let
ap = fp(A) and Gy : x — fs(x)TA € R (where X is the
one-hot encoding of the empty word).

4. Experiments

We compare the classical spectral learning algorithm
with three configurations of our neural-net based method:
applying non-linearity only in the factorization step (de-
noted by fac.non), only in the regression step (denoted by
tran.non), and in both phases (denoted by both.non).
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Figure 3: log(Perplexity) of Pautomac2 dataset based on
different number of states and sample size. The data is
generated from a HMM with 63 states and 18 symbols.

In the experiments, we use empirical frequencies in a
training data set (of sizes ranging from 1, 500 to 20, 000) to
estimate the sub block of the Hankel matrix Hyg, where the
basis B is obtained by selecting the first 1, 000 most frequent
prefixes and suffixes in the training data. We compared the
model for different model sizes k£ ranging from 1 to 500,
where k is the number of states for the spectral method and
the size of nonlinear WFAs. For the latter, the number of
hidden units of P-Net and S-Net is set to 2, 000, while the
number of hidden units in the Tran-Net is set to 2k°.

We used synthetic data from the Pautomac chal-
lenge [Verwer et al., 2014], and we evaluated the models
using the perplexity measure on a test set 7' of size 1,000
defined by Perp(M) = —2 which is normalized so that it
sums to 1 according to Pautomac Challenge. Here we have
H = 3 . Pr(z)log(Py(x)) and Py, Pr denote the
probabilities calculated by the model and the true probabili-
ties respectively. We should keep in mind that all the datasets
from Pautomac are generated from linear models, thus using
a nonlinear model might suffer from model mismatch. We
used problems 2 and 3 form the Pautomac challenge and
the results are reported in Figure 3 and Figure 4 respec-
tively. For pautomac2, we see that when the sample size is
relatively small, such as 1500 and 5000, the original linear
spectral learning will be outperformed by our methods for
small model sizes. When the sample size increases, even
with extreme small model size, nonlinear models still show
reasonable perplexity indicating their potential benefits over
linear models. This confirms our intuition that applying non-
linearity can be beneficial when dealing with small number
of states: in the Kronecker product example, although the
transition functions are linear they admit a nonlinear lower
dimensional representation. Therefore, by using nonlinear
models, one can discover this underlying nonlinear structure

3. These hyper parameters are not finely tunes, thus some optimizations
might potentially improve the results.
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Figure 4: log(Perplexity) of Pautomac3 dataset based on
different number of states and sample size. The data is
generated from a PFA with 25 states and 4 symbols.

and thus potentially reduce the model size. For small sample
sizes, spectral learning tends to exhibit worse performance
than our models (especially for small model sizes). This
is counter-intuitive but we suspect that the linear model is
affected by noise in the training stage in this case. However,
this requires further investigation.

The results for pautomac2 are for a relatively com-
plicated model in terms of number of states and actions.
However, when dealing with a simpler model, such as
pautomac3, our experiments show that non-linearity in this
case could be detrimental. From Figure 4, we can see that for
every sample size spectral learning outperforms our model.
This is somehow not surprising, as the underlying structure
of the model is linear and easier to capture. However, more
interestingly, this experiment exhibits an overfitting behavior
that was not present in the previous experiment due to the
simplicity of the underlying model. In general, nonlinear
factorization is the one that suffers most from overfitting as
shown in the graph, while nonlinear regression and applying
non-linearity in both stages are less prone to overfitting and
are relatively steady even compared to spectral learning.

5. Conclusion and future work

In this paper, we defined a model of nonlinear weighted
finite automata along with a learning algorithm. Our learning
algorithm can be seen as applying non-linearity into the
factorization and regression steps of the spectral learning
algorithm. Empirical results showed that our model can
perform better for complicated intrinsic structures and can
cope with restricted number of states and sample sizes.

In future works, we intend to further assess the benefits
of introducing non-linearity in WFAs on both nonlinear
synthetic data and real word data, and to compare our
approach with recurrent neural nets. Theoretically, it will
be interesting to investigate the properties of the nonlinear
WFA model from a formal language perspective.
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