
Multitask Spectral Learning of Weighted Automata
Guillaume Rabusseau∗1, Borja Balle†‡2, and Joelle Pineau§1

1 Reasoning and Learning Lab, School of Computer Science, McGill University
2Amazon Research Cambridge

June 8, 2017

Abstract
We consider the problem of estimating multiple related functions computed by weighted

automata (WFA). We first present a natural notion of relatedness between WFAs by considering to
which extent several WFAs can share a common underlying representation. We then introduce the
novel model of vector-valued WFA which conveniently helps us formalize this notion of relatedness.
Finally, we propose a spectral learning algorithm for vector-valued WFAs to tackle the multitask
learning problem. By jointly learning multiple tasks in the form of a vector-valued WFA, our
algorithm enforces the discovery of a representation space shared between tasks. The benefits of
the proposed multitask approach are theoretically motivated and showcased through experiments
on both synthetic and real world datasets.

1 Introduction
One common task in machine learning consists in estimating an unknown function f : X → Y from a
training sample of input-output data {(xi, yi)}Ni=1 where each yi ' f(xi) is a (possibly noisy) estimate
of f(xi). In multitask learning, the learner is given several such learning tasks f1, · · · , fm. It has been
shown, both experimentally and theoretically, that learning related tasks simultaneously can lead to
better performances relative to learning each task independently (see e.g. [1, 5], and references therein).
Multitask learning has proven particularly useful when few data points are available for each task, or
when it is difficult or costly to collect data for a target task while much data is available for related
tasks (see e.g. [24] for an example in healthcare). In this paper, we propose a multitask learning
algorithm for the case where the input space X consists of sequence data.

Many tasks in natural language processing, computational biology, or reinforcement learning, rely
on estimating functions mapping sequences of observations to real numbers: e.g. inferring probability
distributions over sentences in language modeling or learning the dynamics of a model of the environment
in reinforcement learning. In this case, the function f to infer from training data is defined over the set
Σ∗ of strings built on a finite alphabet Σ. Weighted finite automata (WFA) are finite state machines
that allow one to succinctly represent such functions. In particular, WFAs can compute any probability
distribution defined by a hidden Markov model (HMM) [9] and can model the transition and observation
behavior of partially observable Markov decision processes [22]. A recent line of work has led to the
development of spectral methods for learning HMMs [14], WFAs [2, 3] and related models, offering an
alternative to EM based algorithms with the benefits of being computationally efficient and providing
consistent estimators.
∗guillaume.rabusseau@mail.mcgill.ca
†pigem@amazon.co.uk
‡This work was done while Borja Balle was lecturer at Lancaster University
§jpineau@cs.mcgill.ca

1

We consider the problem of multitask learning for WFAs. The notion of relatedness between tasks
can be expressed in different ways; one common assumption in multitask learning is that the multiple
tasks share a common underlying representation [4, 8]. In this paper, we present a natural notion
of shared representation between functions defined over strings and we propose a learning algorithm
that encourages the discovery of this shared representation. Intuitively, our notion of relatedness
captures to which extent several functions can be computed by WFAs sharing a joint forward feature
map. In order to formalize this notion of relatedness, we introduce the novel model of vector-valued
WFA (vv-WFA) which generalizes WFAs to vector-valued functions and offer a natural framework to
formalize the multitask learning problem. Given m tasks f1, · · · , fm : Σ∗ → R, we consider the function
~f = [f1, · · · , fm] : Σ∗ → Rm whose output for a given input string x is the m-dimensional vector having
entries fi(x) for i = 1, · · · ,m. We show that the notion of minimal vv-WFA computing ~f exactly
captures our notion of relatedness between tasks and we prove that the dimension of such a minimal
representation is equal to the rank of a flattening of the Hankel tensor of ~f (Theorem 3). Leveraging
this result, we design a spectral learning algorithm for vv-WFAs which constitutes a sound multitask
learning algorithm for WFAs: by learning ~f in the form of a vv-WFA, rather than independently
learning a WFA for each task fi, we implicitly enforce the discovery of a joint feature space shared
among all tasks. After giving a theoretical insight on the benefits of this multitask approach (by
leveraging a recent result on asymmetric bounds for singular subspace estimation [6]), we conclude by
showcasing these benefits with experiments on both synthetic and real world data.

Related work. Multitask learning for sequence data has previously received limited attention. In [13],
mixtures of Markov chains are used to model dynamic user profiles. Tackling the multitask problem
with nonparametric Bayesian methods is investigated in [12] to model related time series with Beta
processes and in [19] to discover relationships between related datasets using nested Dirichlet process
and infinite HMMs. Extending recurrent neural networks to the multitask setting has also recently
received some interest (see e.g. [17, 18]). To the best of our knowledge, this paper constitutes the first
attempt to tackle the multitask problem for the class of functions computed by general WFAs.

2 Preliminaries
We first present notions on weighted automata, spectral learning of weighted automata and tensors.
We start by introducing some notation. We denote by Σ∗ the set of strings on a finite alphabet
Σ. The empty string is denoted by λ and the length of a string x by |x|. For any integer k we let
[k] = {1, 2, · · · , k}. We use lower case bold letters for vectors (e.g. v ∈ Rd1), upper case bold letters for
matrices (e.g. M ∈ Rd1×d2) and bold calligraphic letters for higher order tensors (e.g. T ∈ Rd1×d2×d3).
The ith row (resp. column) of a matrix M will be denoted by Mi,: (resp. M:,i). This notation is
extended to slices of a tensor in the straightforward way. Given a matrix M ∈ Rd1×d2 , we denote by
M† its Moore-Penrose pseudo-inverse and by vec(M) ∈ Rd1d2 its vectorization.

Weighted finite automaton. A weighted finite automaton (WFA) with n states is a tuple A =
(α, {Aσ}σ∈Σ,ω) where α,ω ∈ Rn are the initial and final weights vectors respectively, and Aσ ∈ Rn×n
is the transition matrix for each symbol σ ∈ Σ. A WFA computes a function fA : Σ∗ → R defined for
each word x = x1x2 · · ·xk ∈ Σ∗ by fA(x) = α>Ax1Ax2 · · ·Axkω.

By letting Ax = Ax1Ax2 · · ·Axk for any word x = x1x2 · · ·xk ∈ Σ∗ we will often use the shorter
notation fA(x) = α>Axω. A WFA A with n states is minimal if its number of states is minimal, i.e.
any WFA B such that fA = fB has at least n states. A function f : Σ∗ → R is recognizable if it can be
computed by a WFA. In this case the rank of f is the number of states of a minimal WFA computing
f , if f is not recognizable we let rank(f) =∞.

Hankel matrix. The Hankel matrix Hf ∈ RΣ∗×Σ∗ associated with a function f : Σ∗ → R is the
infinite matrix with entries (Hf)u,v = f(uv) for u, v ∈ Σ∗. The spectral learning algorithm for WFAs
relies on the following fundamental relation between the rank of f and the rank of Hf .

2

Theorem 1. [7, 11] For any function f : Σ∗ → R, rank(f) = rank(Hf).

Spectral learning. Showing that the rank of the Hankel matrix is upper bounded by the rank of f is
easy: given a WFA A = (α, {Aσ}σ∈Σ,ω) with n states, we have the rank n factorization Hf = PS
where the matrices P ∈ RΣ∗×n and S ∈ Rn×Σ∗ are defined by Pu,: = α>Au and S:,v = Avω for all
u, v ∈ Σ∗. The converse is more tedious to show but its proof is constructive, in the sense that it
allows one to build a WFA computing f from any rank n factorization of Hf . This construction is the
cornerstone of the spectral learning algorithm and is given in the following corollary.

Corollary 2. [3, Lemma 4.1] Let f : Σ∗ → R be a recognizable function with rank n, let H ∈ RΣ∗×Σ∗ be
its Hankel matrix, and for each σ ∈ Σ let Hσ ∈ RΣ∗×Σ∗ be defined by Hσ

u,v = f(uσv) for all u, v ∈ Σ∗.
Then, for any P ∈ RΣ∗×n, S ∈ Rn×Σ∗ such that H = PS, the WFA A = (α, {Aσ}σ∈Σ,ω) where

α> = Pλ,:, ω = S:,λ, and Aσ = P†HσS† is a minimal WFA for f .

In practice, finite sub-blocks of the Hankel matrices are used. Given finite sets of prefixes and
suffixes P,S ⊂ Σ∗, let HP,S , {Hσ

P,S}σ∈Σ be the finite sub-blocks of H whose rows (resp. columns) are
indexed by prefixes in P (resp. suffixes in S). One can show that if P and S are such that λ ∈ P∩S and
rank(H) = rank(HP,S), then the previous corollary still holds, i.e. a minimal WFA computing f can
be recovered from any rank n factorization of HP,S . The spectral method thus consists in estimating
the matrices HP,S ,Hσ

P,S from training data (using e.g. empirical frequencies if f is stochastic), finding
a low-rank factorization of HP,S (using e.g. SVD) and constructing a WFA approximating f using
Corollary 2.

Tensors. We make a sporadic use of tensors in this paper, we thus introduce the few necessary
definitions and notations; more details can be found in [15]. A 3rd order tensor T ∈ Rd1×d2×d3 can
be seen as a multidimensional array (T i1,i2,i3 : i1 ∈ [d1], i2 ∈ [d2], , i3 ∈ [d3]). The mode-n fibers
of T are the vectors obtained by fixing all indices except the nth one, e.g. T :,i2,i3 ∈ Rd1 . The nth
mode flattening of T is the matrix having the mode-n fibers of T for columns and is denoted by e.g.
T (1) ∈ Rd1×d2d3 . The mode-1 matrix product of a tensor T ∈ Rd1×d2×d3 and a matrix X ∈ Rm×d1 is a
tensor of size m×d2×d3 denoted by T ×1 X and defined by the relation Y = T ×1 X⇔ Y(1) = XT (1);
the mode-n product for n = 2, 3 is defined similarly.

3 Vector-Valued WFAs for Multitask Learning
In this section, we present a notion of relatedness between WFAs that we formalize by introducing the
novel model of vector-valued weighted automaton. We then propose a multitask learning algorithm for
WFAs by designing a spectral learning algorithm for vector-valued WFAs.

A notion of relatedness between WFAs. The basic idea behind our approach emerges from
interpreting the computation of a WFA as a linear model in some feature space. Indeed, the computation
of a WFA A = (α, {Aσ}σ∈Σ,ω) with n states on a word x ∈ Σ∗ can be seen as first mapping x to an
n-dimensional feature vector through a compositional feature map φ : Σ∗ → Rn, and then applying a
linear form in the feature space to obtain the final value fA(x) = 〈φ(x),ω〉. The feature map is defined
by φ(x)> = α>Ax for all x ∈ Σ∗ and it is compositional in the sense that for any x ∈ Σ∗ and any
σ ∈ Σ we have φ(xσ)> = φ(x)>Aσ. We will say that such a feature map is minimal if the linear space
V ⊂ Rn spanned by the vectors {φ(x)}x∈Σ∗ is of dimension n. Theorem 1 implies that the dimension
of V is actually equal to the rank of fA, showing that the notion of minimal feature map naturally
coincides with the notion of minimal WFA.

A notion of relatedness between WFAs naturally arises by considering to which extent two (or
more) WFAs can share a joint feature map φ. More precisely, consider two recognizable functions
f1, f2 : Σ∗ → R of rank n1 and n2 respectively, with corresponding feature maps φ1 : Σ∗ → Rn1 and
φ2 : Σ∗ → Rn2 . Then, a joint feature map for f1 and f2 always exists and is obtained by considering
the direct sum φ1⊕φ2 : Σ∗ → Rn1+n2 that simply concatenates the feature vectors φ1(x) and φ2(x) for

3

any x ∈ Σ∗. However, this feature map may not be minimal, i.e. there may exist another joint feature
map of dimension n < n1 + n2. Intuitively, the smaller this minimal dimension n is the more related
the two tasks are, with the two extremes being on the one hand n = n1 + n2 where the two tasks are
independent, and on the other hand e.g. n = n1 where one of the (minimal) feature maps φ1, φ2 is
sufficient to predict both tasks.

Vector-valued WFA. We now introduce a computational model for vector-valued functions on strings
that will help formalize this notion of relatedness between WFAs.

Definition 1. A d-dimensional vector-valued weighted finite automaton (vv-WFA) with n states is
a tuple A = (α, {Aσ}σ∈Σ,Ω) where α ∈ Rn is the initial weights vector, Ω ∈ Rn×d is the matrix of
final weights, and Aσ ∈ Rn×n is the transition matrix for each symbol σ ∈ Σ. A vv-WFA computes a
function ~fA : Σ∗ → Rd defined by

~fA(x) = α>Ax1Ax2 · · ·AxkΩ
for each word x = x1x2 · · ·xk ∈ Σ∗.

We extend the notions of recognizability, minimality and rank of a WFA in the straightforward
way: a function ~f : Σ∗ → Rd is recognizable if it can be computed by a vv-WFA, a vv-WFA is minimal
if its number of states is minimal, and the rank of ~f is the number of states of a minimal vv-WFA
computing ~f . A d-dimensional vv-WFA can be seen as a collection of d WFAs that all share their
initial vectors and transition matrices but have different final vectors. Alternatively, one could take a
dual approach and define vv-WFAs as a collection of WFAs sharing transitions and final vectors1.

vv-WFAs and relatedness between WFAs. We now show how the vv-WFA model naturally
captures the notion of relatedness presented above. Recall that this notion intends to capture to
which extent two recognizable functions f1, f2 : Σ∗ → R, of ranks n1 and n2 respectively, can share
a joint forward feature map φ : Σ∗ → Rn satisfying f1(x) = 〈φ(x),ω1〉 and f2(x) = 〈φ(x),ω2〉 for all
x ∈ Σ∗, for some ω1,ω2 ∈ Rn. Consider the vector-valued function ~f = [f1, f2] : Σ∗ → R2 defined
by ~f(x) = [f1(x), f2(x)] for all x ∈ Σ∗. It can easily be seen that the minimal dimension of a shared
forward feature map between f1 and f2 is exactly the rank of ~f , i.e. the number of states of a minimal
vv-WFA computing ~f . This notion of relatedness can be generalized to more than two functions
by considering ~f = [f1, · · · , fm] for m different recognizable functions f1, · · · , fm of respective ranks
n1, · · · , nm. In this setting, it is easy to check that the rank of ~f lies between max(n1, · · · , nm) and
n1 + · · ·+ nm; smaller values of this rank leads to a smaller dimension of the minimal forward feature
map and thus, intuitively, to more closely related tasks. We now formalize this measure of relatedness
between recognizable functions.

Definition 2. Given m recognizable functions f1, · · · , fm, we define their relatedness measure by
τ(f1, · · · , fm) = 1− (rank(~f)−maxi rank(fi))/

∑
i rank(fi) where ~f = [f1, · · · , fm].

One can check that this measure of relatedness takes its values in (0, 1]. We say that tasks are
maximally related when their relatedness measure is 1 and independent when it is minimal.

Example 1. Let Σ = {a, b, c} and let |x|σ denotes the number of occurrences of σ in x for any σ ∈ Σ.
Consider the functions defined by f1(x) = 0.5|x|a + 0.5|x|b, f2(x) = 0.3|x|b − 0.6|x|c and f3(x) = |x|c
for all x ∈ Σ∗. It is easy to check that rank(f1) = rank(f2) = 4 and rank(f3) = 2. Moreover, f2
and f3 are maximally related (indeed rank([f2, f3]) = 4 = rank(f2) thus τ(f2, f3) = 1), f1 and f3 are
independent (indeed τ(f1, f3) = 2/3 is minimal since rank([f1, f3]) = 6 = rank(f1) + rank(f3)), and
f1 and f2 are related but not maximally related (since 4 = rank(f1) = rank(f2) < rank([f1, f2]) = 6 <
rank(f1) + rank(f2) = 8).

1Both definitions performed similarly in multitask experiments on the dataset used in Section 5.2, we thus chose
multiple final vectors as a convention.

4

Spectral learning of vv-WFAs. We now design a spectral learning algorithm for vv-WFAs. Given
a function ~f : Σ∗ → Rd, we define its Hankel tensor H ∈ RΣ∗×d×Σ∗ by Hu,:,v = ~f(uv) for all u, v ∈ Σ∗.
We first show in Theorem 3 (whose proof can be found in the appendix) that the fundamental relation
between the rank of a function and the rank of its Hankel matrix can naturally be extended to the
vector-valued case. Compared with Theorem 1, the Hankel matrix is now replaced by the mode-1
flattening H(1) of the Hankel tensor (which can be obtained by concatenating the matrices H:,i,: along
the horizontal axis).

Theorem 3 (Vector-valued Fliess Theorem). Let ~f : Σ∗ → Rd and let H be its Hankel tensor. Then
rank(~f) = rank(H(1)).

Similarly to the scalar-valued case, this theorem can be leveraged to design a spectral learning
algorithm for vv-WFAs. The following corollary (whose proof can be found in the appendix) shows
how a vv-WFA computing a recognizable function ~f : Σ∗ → Rd of rank n can be recovered from any
rank n factorization of its Hankel tensor.

Corollary 4. Let ~f : Σ∗ → Rd be a recognizable function with rank n, let H ∈ RΣ∗×d×Σ∗ be its Hankel
tensor, and for each σ ∈ Σ let Hσ ∈ RΣ∗×d×Σ∗ be defined by Hσ

u,:,v = ~f(uσv) for all u, v ∈ Σ∗.
Then, for any P ∈ RΣ∗×n and S ∈ Rn×d×Σ∗ such that H = S ×1 P, the vv-WFA A =

(α, {Aσ}σ∈Σ,Ω) defined by α> = Pλ,:, Ω = S :,:,λ, and Aσ = P†Hσ
(1)(S(1))† is a minimal vv-WFA

computing ~f .

Similarly to the scalar-valued case, one can check that the previous corollary also holds for any finite
sub-tensors HP,S , {Hσ

P,S}σ∈Σ of H indexed by prefixes and suffixes in P,S ⊂ Σ∗, whenever P and S
are such that λ ∈ P ∩ S and rank(H(1)) = rank((HP,S)(1)); we will call such a basis (P,S) complete.
The spectral learning algorithm for vv-WFAs then consists in estimating these Hankel tensors from
training data and using Corollary 4 to recover a vv-WFA approximating the target function. Of course
a noisy estimate of the Hankel tensor Ĥ will not be of low rank and the factorization Ĥ = S ×1 P
should only be performed approximately in order to counter the presence of noise. In practice a low
rank approximation of Ĥ(1) is obtained using truncated SVD.

Multitask learning of WFAs. Let us now go back to the multitask learning problem and let
f1, · · · fm : Σ∗ → R be multiple functions we wish to infer in the form of WFAs. The spectral
learning algorithm for vv-WFAs naturally suggests a way to tackle this multitask problem: by learning
~f = [f1, · · · , fm] in the form of a vv-WFA, rather than independently learning a WFA for each task fi,
we implicitly enforce the discovery of a joint forward feature map shared among all tasks.

We will now see how a further step can be added to this learning scheme to enforce more robustness
to noise. The motivation for this additional step comes from the observation that even though a
d-dimensional vv-WFA A = (α, {Aσ}σ∈Σ,Ω) may be minimal, the corresponding scalar-valued WFAs
Ai = 〈α, {Aσ}σ∈Σ,Ω:,i〉 for i ∈ [d] may not be. Suppose for example that A1 is not minimal. This
implies that some part of its state space does not contribute to the function f1 but comes from asking
for a rich enough state representation that can predict other tasks as well. Moreover, when one learns a
vv-WFA from noisy estimates of the Hankel tensors, the rank R approximation Ĥ(1) ' PS(1) somehow
annihilates the noise contained in the space orthogonal to the top R singular vectors of Ĥ(1), but when
the WFA A1 has rank R1 < R we intuitively see that there is still a subspace of dimension R − R1
containing only irrelevant features. In order to circumvent this issue, we would like to project down
the (scalar-valued) WFAs Ai down to their true dimensions, intuitively enforcing each predictor to use
as few features as possible for each task, and thus annihilating the noise lying in the corresponding
irrelevant subspaces. To achieve this we will make use of the following proposition that explicits the
projections needed to obtain minimal scalar-valued WFAs from a given vv-WFA (the proof is given in
the appendix).

5

Proposition 1. Let ~f : Σ∗ → Rd be a function computed by a minimal vv-WFA A = (α, {Aσ}σ∈Σ,Ω)
with n states and let P,S ⊆ Σ∗ be a complete basis for ~f . For any i ∈ [d], let fi : Σ∗ → R be defined by
fi(x) = ~f(x)i for all x ∈ Σ∗ and let ni denote the rank of fi.

Let P ∈ RP×n be defined by Px,: = α>Ax for all x ∈ P and, for i ∈ [d], let Hi ∈ RP×S be the
Hankel matrix of fi and let Hi = UiDiV>i be its thin SVD (i.e. Di ∈ Rni×ni).

Then, for any i ∈ [d], the WFA Ai = 〈αi, {Aσ
i }σ∈Σ},ωi〉 defined by

α>i = α>P†Ui, ωi = U>i PΩ:,i and Aσ
i = U>i PAσP†Ui for each σ ∈ Σ,

is a minimal WFA computing fi.

Given noisy estimates Ĥ, {Ĥσ}σ∈Σ of the Hankel tensors of a function ~f and estimates R of the
rank of ~f and Ri of the ranks of the fi’s, the first step of the learning algorithm consists in applying
Corollary 4 to the factorization Ĥ(1) ' U(DV>) obtained by truncated SVD to get a vv-WFA A

approximating ~f . Then, Proposition 1 can be used to project down each WFA Ai by estimating
Ui with the top Ri left singular vectors of Ĥ:,i,:. The overall procedure for our Multi-Task Spectral
Learning (MT-SL) is summarized in Algorithm 1 where lines 1-3 correspond to the vv-WFA estimation
while lines 4-7 correspond to projecting down the corresponding scalar-valued WFAs.

Algorithm 1 MT-SL: Spectral Learning of vector-valued WFA for multitask learning
Input: Empirical Hankel tensors Ĥ, {Ĥσ}σ∈Σ of size P × m × S for the target function ~f =

[f1, · · · , fm] (where P,S are subsets of Σ∗ both containing λ), a common rank R, and task
specific ranks Ri for i ∈ [m].

Output: WFAs Ai approximating fi for each i ∈ [d].
1: Compute the rank R truncated SVD Ĥ(1) ' UDV>.
2: Let A = (α, {Aσ}σ∈Σ,Ω) be the vv-WFA defined by

α> = Uλ,:, ,Ω = U>(Ĥ:,:,λ) and Aσ = U>Ĥσ
(1)(Ĥ(1))†U for each σ ∈ Σ.

3: for i = 1 to m do
4: Compute the rank Ri truncated SVD Ĥ:,i,: ' UiDiV>i .
5: Let Ai = 〈U>i Uα, {U>i UAσU>Ui}σ∈Σ,U>i UΩ:,i〉
6: end for
7: return A1, · · · , Am.

4 Theoretical Analysis

Computational complexity. The computational cost of the classical spectral learning algorithm (SL)
is in O

(
N +R|P||S|+R2|P||Σ|

)
where the first term corresponds to estimating the Hankel ma-

trices from a sample of size N , the second one to the rank R truncated SVD, and the third one
to computing the transition matrices Aσ. In comparison, the computational cost of MT-SL is in
O
(
mN + (mR+

∑
iRi)|P||S|+ (mR2 +

∑
iR

2
i)|P||Σ|

)
, showing that the increase in complexity is

essentially linear in the number of tasks m.

Robustness in subspace estimation. In order to give some theoretical insights on the potential
benefits of MT-SL, let us consider the simple case where the tasks are maximally related with common
rank R = R1 = · · · = Rm. Let Ĥ1, · · · , Ĥm ∈ RP×S be the empirical Hankel matrices for the m tasks
and let Ei = Ĥi−Hi be the error terms, where Hi is the true Hankel matrix for the ith task. Then the
flattening Ĥ = Ĥ(1) ∈ R|P|×m|S| (resp. H = H(1)) can be obtained by stacking the matrices Ĥi (resp.
Hi) along the horizontal axis. Consider the problem of learning the first task. One key step of both SL
and MT-SL resides in estimating the left singular subspace of H1 and H respectively from their noisy
estimates. When the tasks are maximally related, this space U is the same for H and H1, · · · ,Hm

6

and we intuitively see that the benefits of MT-SL will stem from the fact that the SVD of Ĥ should
lead to a more accurate estimation of U than the one only relying on Ĥ1. It is also intuitive to see
that since the Hankel matrices Ĥi have been stacked horizontally, the estimation of the right singular
subspace might not benefit from performing SVD on Ĥ. However, classical results on singular subspace
estimation (see e.g. [25, 16]) provide uniform bounds for both left and right singular subspaces (i.e.
bounds on the maximum of the estimation errors for the left and right spaces). To circumvent this
issue, we use a recent result on rate optimal asymmetric perturbation bounds for left and right singular
spaces [6] to obtain the following theorem relating the ratio between the dimensions of a matrix to the
quality of the subspace estimation provided by SVD (the proof can be found in the appendix).

Theorem 5. Let M ∈ Rd1×d2 be of rank R and let M̂ = M + E where E is a random noise term such
that vec(E)

‖E‖F
follows a uniform distribution on the unit sphere in Rd1d2 . Let ΠU ,ΠÛ ∈ Rd1×d1 be the

matrices of the orthogonal projections onto the space spanned by the top R left singular vectors of M
and M̂ respectively.

Let δ > 0, let α = sR(M) be the smallest non-zero singular value of M and suppose that ‖E‖F ≤ α/2.
Then, with probability at least 1− δ,

‖ΠU −ΠÛ‖F ≤ 4

√ (d1 −R)R+ 2 log(1/δ)
d1d2

‖E‖F
α

+ ‖E‖
2
F

α2

 .

A few remarks on this theorem are in order. First, the Frobenius norm between the projection
matrices measures the distance between the two subspaces (it is in fact proportional to the classical
sin-theta distance between subspaces). Second, the assumption ‖E‖F ≤ α/2 corresponds to the
magnitude of the noise being small compared to the magnitude of M (and in particular it implies
‖E‖F

α < 1). Lastly, as d2 grows the first term in the upper bound becomes irrelevant and the error is
dominated by the quadratic term, which decreases with ‖E‖F faster than classical results. Intuitively
this tells us that there is a first regime where growing d2 (i.e. adding more tasks) is beneficial, until the
point where the quadratic term dominates (and where the bound becomes somehow independent of d2).

Going back to the power of MT-SL to leverage information from related tasks, let E ∈ R|P|×m|S| be
the matrix obtained by stacking the noise matrices Ei along the horizontal axis. If we assume that
the entries of the error terms Ei are i.i.d. from e.g. a normal distribution, we can apply the previous
proposition to the left singular subspaces of Ĥ(1) and H(1). One can check that in this case we have
‖E‖2F =

∑m
i=1 ‖Ei‖2F and α2 = sR(H)2 ≥

∑m
i=1 sR(Hi)2 (since R = R1 = · · · = Rm when tasks are

maximally related). Thus, if the norms of the noise terms Ei are roughly the same, and so are the
smallest non-zero singular values of the matrices Hi, we get ‖E‖F

α ≤ O (‖E1‖F /sR(H1)). Hence, given
enough tasks, the estimation error of the left singular subspace of H1 in the multitask setting (i.e. by
performing SVD on Ĥ(1)) is intuitively in O

(
‖E1‖2F /sR(H1)2) while it is only in O (‖E1‖F /sR(H1))

when relying solely on Ĥ1, which shows the potential benefits of MT-SL.

5 Experiments
We evaluate the performance of the proposed multitask learning method (MT-SL) on both synthetic
and real world data. We use two performance metrics: perplexity per character on a test set T , which
is defined by perp(h) = 2−

1
M

∑
x∈T

log(h(x)) where M is the number of symbols in the test set and h is
the hypothesis, and word error rate (WER) which measures the proportion of mis-predicted symbols
averaged over all prefixes in the test set (when the most likely symbol is predicted). Both experiments
are in a stochastic setting, i.e. the functions to be learned are probability distributions, and explore the
regime where the learner has access to a small training sample drawn from the target task, while larger
training samples are available for related tasks. We compare MT-SL with the classical spectral learning
method (SL) for WFAs [3]. For both methods the prefix set P (resp. suffix set S) is chosen by taking

7

102 103

train size

3

4

5

6

7

p
e
rp

le
xi

ty

dS = 10, dT = 0

102 103

0.35

0.40

0.45

0.50

w
o
rd

 e
rr

o
r

ra
te

102 103

train size

3

4

5

6

p
e
rp

le
xi

ty

dS = 10, dT = 5

true model
SL
MT-SL, 2 tasks
MT-SL, 4 tasks
MT-SL, 8 tasks

102 103

0.40

0.45

0.50

0.55
w

o
rd

 e
rr

o
r

ra
te

102 103

train size

2.5

3.0

3.5

4.0

4.5

p
e
rp

le
xi

ty

dS = 10, dT = 10

102 103

0.45

0.50

0.55

0.60

0.65

w
o
rd

 e
rr

o
r

ra
te

Figure 1: Comparison (on synthetic data) between the spectral learning algorithm (SL) and our multitask
algorithm (MT-SL) for different numbers of tasks and different degrees of relatedness between the tasks: dS is
the dimension of the space shared by all tasks and dT the one of the task-specific space (see text for details).

the 1, 000 most frequent prefixes (resp. suffixes) in the training data of the target task, and the values
of the ranks are chosen using a validation set.

5.1 Synthetic Data
We first assess the validity of MT-SL on synthetic data. We randomly generated stochastic WFAs
using the process used for the PAutomaC competition [23] with symbol sparsity 0.4 and transition
sparsity 0.15, for an alphabet Σ of size 10. We generated related WFAs2 sharing a joint feature space
of dimension dS = 10 and each having a task specific feature space of dimension dT , i.e. for m tasks
f1, · · · , fm each WFA computing fi has rank dS + dT and the vv-WFA computing ~f = [f1, · · · , fm]
has rank dS +mdT . We generated 3 sets of WFAs for different task specific dimensions dT = 0, 5, 10.
The learner had access to training samples of size 5, 000 drawn from each related tasks f2, · · · , fm and
a training sample of sizes ranging from 50 to 5, 000 drawn from the target task f1. Results on a test set
of size 1, 000 averaged over 10 runs are reported in Figure 1.

For both evaluation measures, when the task specific dimension is small compared to the dimension
of the joint feature space, i.e. dT = 0, 5, MT-SL clearly outperforms SL that only relies on the target
task data. Moreover, increasing the number of related tasks tends to improve the performances of
MT-SL. However, when dS = dT = 10, MT-SL performs similarly in terms of perplexity and WER,
showing that the multitask approach offers no benefits when the tasks are too loosely related.

5.2 Real Data
We evaluate MT-SL on 33 languages from the Universal Dependencies (Unidep) 1.4 treebank [20],
using the 17-tag universal Part of Speech (PoS) tagset. This dataset contains sentences from various

2More precisely, we first generate a probabilistic automaton (PA) AS = (αS , {Aσ
S}σ∈Σ,ωS) with dS states. Then,

for each task i = 1, · · · , m we generate a second PA AT = (αT , {Aσ
T }σ∈Σ,ωT) with dT states and a random vector

ω ∈ [0, 1]dS+dT . Both PAs are generated using the process described in [23]. The task fi is then obtained as the
distribution computed by the stochastic WFA 〈αS ⊕ αT , {Aσ

S ⊕Aσ
T }σ∈Σ, ω̃〉 with ω̃ = ω/Z where the constant Z is

chosen such that
∑

x∈Σ∗ fi(x) = 1.

8

Training size 100 500 1000 5000 all available data

Related tasks: all other languages

Perplexity 6.0811 (±7.82) 3.4462 (±5.32) 2.9733 (±5.23) 3.5610 (±5.30) 3.1141 (±5.42)
WER 1.2103 (±1.88) 0.8234 (±2.10) 1.1707 (±2.38) 1.7114 (±2.73) 1.5920 (±2.70)

Related tasks: 4 closest languages

Perplexity 6.6447 (±7.84) 4.3097 (±5.57) 3.7982 (±5.24) 3.1971 (±5.63) 2.7866 (±5.84)
WER 2.0135 (±2.81) 1.7025 (±2.71) 1.2685 (±2.10) 1.4412 (±2.06) 1.3126 (±2.24)

Table 1: Average relative improvement (in %) of the multitask approach on the Unidep dataset.

languages where each word is annotated with Google universal PoS tags [21], and thus can be seen as
a collection of samples drawn from 33 distributions over strings on an alphabet of size 17. For each
language, the available data is split between a training, a validation and a test set (80%, 10%, 10%). For
each language and for various sizes of training samples, we compare independently learning the target
task with SL against using MT-SL to exploit training data from related tasks. We tested two ways of
selecting the related tasks: (1) all other languages are used and (2) for each language we selected the 4
closest languages w.r.t. the distance between the subspaces spanned by the top 50 left singular vectors
of their Hankel matrices 3.

We report the average relative improvement of MT-SL w.r.t. SL over all languages in Table 1, e.g.
for perplexity we report 100 · (psl−pmt)/psl where psl (resp. pmt) is the perplexity obtained by SL (resp.
MT-SL) on the test set. We see that the multitask approach leads to improved results for both metrics,
that the benefits tend to be greater for small training sizes, and that restricting the number of auxiliary
tasks is overall beneficial. To give a concrete example, on the Basque task with a training set of size
500, the WER was reduced from ∼ 77% for SL to ∼ 71% using all other languages as related tasks, and
to ∼ 68% using the 4 closest tasks (Finnish, Polish, Czech and Indonesian). The detailed results on all
languages, along with the list of closest languages used for method (2), are reported in the appendix.

6 Conclusion
We introduced the novel model of vector-valued WFA that allowed us to define a notion of relatedness
between recognizable functions and to design a multitask spectral learning algorithm for WFAs (MT-SL).
The benefits of MT-SL have been theoretically motivated and showcased on both synthetic and real
data experiments. In future works, we plan to apply MT-SL in the context of reinforcement learning
and to identify other areas of machine learning where vv-WFAs could prove to be useful.

References
[1] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Multi-task feature learning. In NIPS,

pages 41–48, 2007.

[2] Raphaël Bailly, François Denis, and Liva Ralaivola. Grammatical inference as a principal component
analysis problem. In ICML, pages 33–40, 2009.

[3] Borja Balle, Xavier Carreras, Franco M Luque, and Ariadna Quattoni. Spectral learning of weighted
automata. Machine learning, 96(1-2):33–63, 2014.

[4] Jonathan Baxter et al. A model of inductive bias learning. Journal of Artifical Intelligence Research,
12(149-198):3, 2000.

3The common basis (P,S) for these Hankel matrices is chosen by taking the union of the 100 most frequent prefixes
and suffixes in each training sample.

9

[5] Shai Ben-David and Reba Schuller. Exploiting task relatedness for multiple task learning. In Learning
Theory and Kernel Machines, pages 567–580. Springer, 2003.

[6] T Tony Cai and Anru Zhang. Rate-optimal perturbation bounds for singular subspaces with applications
to high-dimensional statistics. arXiv preprint arXiv:1605.00353, 2016.

[7] Jack W. Carlyle and Azaria Paz. Realizations by stochastic finite automata. Journal of Computer and
System Sciences, 5(1):26–40, 1971.

[8] Rich Caruana. Multitask learning. In Learning to learn, pages 95–133. Springer, 1998.

[9] François Denis and Yann Esposito. On rational stochastic languages. Fundamenta Informaticae, 86(1,
2):41–77, 2008.

[10] Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of randomized
algorithms. Cambridge University Press, 2009.

[11] Michel Fliess. Matrices de hankel. Journal de Mathématiques Pures et Appliquées, 53(9):197–222, 1974.

[12] Emily Fox, Michael I Jordan, Erik B Sudderth, and Alan S Willsky. Sharing features among dynamical
systems with beta processes. In NIPS, pages 549–557, 2009.

[13] Mark A Girolami and Ata Kabán. Simplicial mixtures of markov chains: Distributed modelling of dynamic
user profiles. In NIPS, volume 16, pages 9–16, 2003.

[14] Daniel J. Hsu, Sham M. Kakade, and Tong Zhang. A spectral algorithm for learning hidden markov
models. In COLT, 2009.

[15] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):455–500,
2009.

[16] Ren-Cang Li. Relative perturbation theory: II. eigenspace and singular subspace variations. SIAM Journal
on Matrix Analysis and Applications, 20(2):471–492, 1998.

[17] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Recurrent neural network for text classification with
multi-task learning. In IJCAI, pages 2873–2879, 2016.

[18] Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser. Multi-task sequence to
sequence learning. arXiv preprint arXiv:1511.06114, 2015.

[19] Kai Ni, Lawrence Carin, and David Dunson. Multi-task learning for sequential data via ihmms and the
nested dirichlet process. In ICML, pages 689–696, 2007.

[20] Joakim Nivre, Zeljko Agić, Lars Ahrenberg, et al. Universal dependencies 1.4, 2016. LINDAT/CLARIN
digital library at the Institute of Formal and Applied Linguistics, Charles University.

[21] Slav Petrov, Dipanjan Das, and Ryan McDonald. A universal part-of-speech tagset. arXiv preprint
arXiv:1104.2086, 2011.

[22] Michael Thon and Herbert Jaeger. Links between multiplicity automata, observable operator models and
predictive state representations: a unified learning framework. Journal of Machine Learning Research,
16:103–147, 2015.

[23] Sicco Verwer, Rémi Eyraud, and Colin De La Higuera. Results of the pautomac probabilistic automaton
learning competition. In ICGI, pages 243–248, 2012.

[24] Boyu Wang, Joelle Pineau, and Borja Balle. Multitask generalized eigenvalue program. In AAAI, pages
2115–2121, 2016.

[25] Per-Åke Wedin. Perturbation bounds in connection with singular value decomposition. BIT Numerical
Mathematics, 12(1):99–111, 1972.

10

A Proofs
A.1 Proof of Theorem 3
Theorem. Let ~f : Σ∗ → Rd and let H be the corresponding Hankel tensor. Then rank(f) = rank(H(1)).

Proof. We first show that rank(~f) ≥ rank(H(1)). Let A = (α, {Aσ}σ∈Σ,Ω) be a vv-WFA with n states
computing ~f and let P ∈ RΣ∗×n and S ∈ Rn×d×Σ∗ be defined by

Pu,: = α>Au and S :,:,v = AvΩ.

It is easy to check that H = S ×1 P which implies H(1) = PS(1) and thus rank(H(1)) ≤ n.
For the converse, we first define the notion of residual functions of ~f : for any x ∈ Σ∗ the residual

x : Σ∗ → Rd is the function defined by x(u) = ~f(xu) for any u ∈ Σ∗. Let V = {x : x ∈ Σ∗} ⊂ (Rd)Σ∗

be the space of residual functions of f . Suppose that rank(H(1)) = n. Since each residual x can be
identified with the row vector (H(1))x,:, the dimension of V is equal to n. Thus there exist n words
e1, · · · , en ∈ Σ∗ such that (e1, · · · , en) is a basis of V . Expressing λ and eiσ for each i ∈ [n], σ ∈ Σ in
this basis, we know that there exist α ∈ Rn and Aσ ∈ Rn×n for each σ such that

λ =
∑
i

αiei and eiσ =
∑
j

Aσ
i,jej .

We now show by induction on |x| that eix =
∑
j Ax

i,jej for any non-empty string x ∈ Σ∗. The case
x = σ ∈ Σ is immediate by definition of Aσ. Let x, y be two non-empty words, for any u ∈ Σ∗ and any
i ∈ [n] we get

eixy(u) = ~f(eixyu) = eix(yu)

=
∑
j

Ax
i,jej(yu) =

∑
j

Ax
i,j
~f(ejyu) =

∑
j

Ax
i,jejy(u)

=
∑
j

Ax
i,j

∑
k

Ay
j,kek(u) =

∑
k

Axy
i,kek(u)

using the induction hypothesis twice. To conclude the proof, let Ω ∈ Rn×d be the matrix with rows
ei(λ) for i ∈ [n]. For any x ∈ Σ∗ we have

~f(x) = λ(x) =
∑
i

αiei(x) =
∑
i

αieix(λ)

=
∑
i

αi
∑
j

Ax
i,jej(λ) = α>AxΩ,

showing that the vv-WFA (α, {Aσ}σ∈Σ,Ω) computes ~f and consequently that rank(~f) ≤ n =
rank(H(1)).

A.2 Proof of Corollary 4
Corollary. Let ~f : Σ∗ → Rd be a recognizable function with rank n, let H ∈ RΣ∗×d×Σ∗ be its Hankel
tensor, and for each σ ∈ Σ let Hσ ∈ RΣ∗×d×Σ∗ be defined by Hσ

u,:,v = f(uσv) for all u, v ∈ Σ∗.
Then, for any P ∈ RΣ∗×n and S ∈ Rn×d×Σ∗ such that H = S ×1 P, the vv-WFA A =

(α, {Aσ}σ∈Σ,Ω) defined by α> = Pλ,:, Ω = S :,:,λ, and Aσ = P†Hσ
(1)(S(1))† is a minimal vv-WFA

computing ~f .

11

Proof. Let Â = (α̂>, {Âσ}σ∈Σ, Ω̂) be a minimal vv-WFA computing ~f and let P̂ ∈ RΣ∗×n and
Ŝ ∈ Rn×d×Σ∗ be defined by

P̂u,: = α>Âu and Ŝ :,:,v = ÂvΩ, u, v ∈ Σ∗,

hence H = Ŝ ×1 P̂ and, equivalently, H(1) = P̂Ŝ(1). We will show that α> = α̂>M−1, Ω = MΩ̂ and
Aσ = MÂσM−1 for each σ ∈ Σ where M = P†P̂, which will imply ~fA = ~fÂ = ~f .

To simplify the notations, let H = H(1), S = S(1), Ŝ = Ŝ(1), and Hσ = (Hσ)(1) for each σ ∈ Σ.
First observe that since P†P̂ŜS† = P†HS† = I, the matrix M is invertible with M−1 = ŜS†. Using
the identities Hσ = P̂ÂσŜ, Hλ,: = α̂>Ŝ, P†H:,:,λ = S :,:,λ, and H:,:,λ = P̂Ω̂, we then get

Aσ = P†HσS† = P†P̂ÂσŜS† = MÂσM−1,

α> = Pλ,: = Hλ,:S† = α̂>ŜS† = α̂>M−1, and
Ω = S :,:,λ = P†H:,:,λ = P†P̂Ω̂ = MΩ̂.

A.3 Proof of Proposition 1
Proposition. Let ~f : Σ∗ → Rd be a function computed by a vv-WFA A = (α, {Aσ}σ∈Σ,Ω) with n
states and let P,S ⊆ Σ∗ be a complete basis for ~f . For any i ∈ [d], let fi : Σ∗ → R be defined by
fi(x) = ~f(x)i for all x ∈ Σ∗ and let ni denote the rank of fi.

Let P ∈ RP×n be defined by Px,: = α>Ax for all x ∈ P and, for i ∈ [d], let Hi = UiDiV>i be the
thin SVD of Hi (i.e. Di ∈ Rni×ni) where Hi ∈ RP×S is the hankel matrix of fi.

Then, for any i ∈ [d], the WFA Ai = 〈αi, {Aσ
i }σ∈Σ},ωi〉 defined by

α>i = α>P†Ui, ωi = U>i PΩ:,i and Aσ
i = U>i PAσP†Ui for each σ ∈ Σ,

is a minimal WFA computing fi.

Proof. For each i ∈ [d], let Si ∈ Rn×S be defined by (Si):,x = AxΩ:,i and consider the |P| × d|S| block
matrices H =

[
H1, · · · ,Hd

]
, Hσ =

[
Hσ

1 , · · · ,Hσ
d

]
for each σ ∈ Σ, and S =

[
S1, · · · ,Sd

]
.

We show the result for i = 1. First, it follows from applying Corollary 2 to the factorization
H1 = U1(D1V>1) that the WFA Â = 〈α̂, {Âσ}σ∈Σ, ω̂〉 defined by

α̂> = (U1)λ,:, ω̂ = (DV>1):,λ and Âσ = U>1 Hσ
1 V1D−1

1 for each σ ∈ Σ

is a minimal WFA computing f1. We will show that the WFA A1 is exactly Â.
Let σ ∈ Σ. We start by showing that Aσ

1 = Âσ. It is easy to check that H = PS and Hσ = PAσS.
Furthermore, since Hσ = HσS†S we have Hσ

1 = HσS†S1, which implies AσS1 = P†HσS†S1 = P†Hσ
1 .

It then follows that

Aσ
1 = U>1 PAσP†U1

= U>1 PAσP†U1(D1V>1 V1D−1
1)

= U>1 PAσP†H1V1D−1
1

= U>1 PAσS1V1D−1
1

= U>1 PP†Hσ
1 V1D−1

1

= U>1 Hσ
1 V1D−1

1 = Âσ

where we also used the fact that PP†Hσ
1 = Hσ

1 and P†H1 = S1. Now since the column space of U1 is
contained in the column space of P, we have U>1 PP† = U>1 (and similarly PP†U1 = U1). Using the
this fact and observing that α> = Hλ,:S† and Ω = P†(H:,:,λ) we get

α>1 = α>P†U1 = Hλ,:S†P†U1 = Pλ,:P†U1 = (U1)λ,: = α̂>

12

and
ω1 = U>1 PΩ:,1 = U>1 PP†(H:,1,λ) = U>1 (H1):,λ = ω̂

which concludes the proof.

A.4 Proof of Theorem 5
Theorem. Let M ∈ Rd1×d2 be of rank R and let M̂ = M + E where E is a random noise term such
that vec(E)

‖E‖F
follows a uniform distribution on the unit sphere in Rd1d2 . Let ΠU ,ΠÛ ∈ Rd1×d1 be the

matrices of the orthogonal projections onto the space spanned by the top R left singular vectors of M
and M̂ respectively.

Let δ > 0, let α = sR(M) be the smallest non-zero singular value of M and suppose that ‖E‖F ≤ α/2.
Then, with probability at least 1− δ,

‖ΠU −ΠÛ‖F ≤ 4

√ (d1 −R)R+ 2 log(1/δ)
d1d2

‖E‖F
α

+ ‖E‖
2
F

α2

 .

Let ΠU⊥ = I−ΠU and ΠV⊥ = I−ΠV . Then, under the assumption ‖E‖F ≤ α/2, it follows from
Theorem 1 in [6] that

‖ΠU −ΠÛ‖F ≤
2
√

2
α

(
‖ΠU⊥EΠV ‖F + ‖ΠU⊥EΠV⊥‖F · ‖ΠUEΠV⊥‖F

α

)
.

The second term of the sum can be bounded using the fact that both ‖ΠU⊥EΠV⊥‖F and ‖ΠUEΠV⊥‖F
are bounded by ‖E‖F . Indeed we have e.g.

‖ΠU⊥EΠV⊥‖F = ‖(ΠV⊥ ⊗ΠU⊥)vec(E)‖F ≤ ‖vec(E)‖F = ‖E‖F

since ΠV⊥ ⊗ΠU⊥ is the matrix of an orthogonal projection. To bound the first term, we use the
following lemma showing that the norm of a d-dimensional random vector v projected onto a fixed
subspace of dimension k will be concentrated around

√
k/d‖v‖.

Lemma 1. Let Π ∈ Rd×d be a rank k projection matrix and let v ∈ Rd be a random variable such that
v
‖v‖ follows a uniform distribution on the unit sphere in Rd. Then, for any δ > 0,

P
[
‖Πv‖22 > 2k + 2 log(1/δ)

d
‖v‖22

]
≤ δ.

Proof. This directly comes form the following classical result (see e.g. Lemma 2.4 in [10]): if x is a
random unit vector drawn uniformly from the unit sphere we have for any β > 1

P
[
‖Πx‖22 ≤ β

k

d

]
≤ exp

{
k

2 (1− β + log β)
}
.

Using the inequality log β ≤ β/2, the right term can be upper bounded by exp(k/2(1− β/2), and by
setting this upper bound equal to δ we get β = 2(1 + 2 log(1/δ)/k) which leads to the result.

Applying this lemma to ‖ΠU⊥EΠV ‖F = ‖(ΠV ⊗ΠU⊥)vec(E)‖2 by observing that ΠV ⊗ΠU⊥ is a
d1d2×d1d2 projection matrix of rank R(d1−R), we get that ‖ΠU⊥EΠV ‖F ≤

√
2 (d1−R)R+2 log(1/δ)

d1d2
‖E‖F

with probability at least 1− δ which concludes the proof.

13

B Detailed Results for Experiments on Real Data
The perplexity and WER on the test sets for all languages are reported in Table 2 when MT-SL is used
with all other languages as related tasks, and in Table 3 when only the 4 closest languages are used.
The list of the closest languages used for each task can be found in Table 4.

14

Perplexity Word Error Rate (%)
Language Training size SL MT-SL SL MT-SL

Ancient Greek 100 4.038 4.152 78.868 78.868
500 4.119 4.140 77.735 78.108

1000 4.239 4.207 74.661 74.923
all 4.582 4.564 75.596 75.804

Arabic 100 2.298 2.291 78.320 77.105
500 2.300 2.293 74.134 74.134

1000 2.308 2.305 67.251 67.251
all 2.306 2.338 66.595 66.595

Basque 100 6.184 6.196 75.398 71.241
500 6.220 6.067 77.511 71.157

1000 6.268 6.268 76.388 68.452
all 6.760 6.760 75.803 68.192

Bulgarian 100 5.240 5.121 73.009 73.009
500 5.475 5.475 67.561 67.733

1000 5.616 5.616 66.315 63.786
all 6.162 6.162 66.018 62.196

Croatian 100 5.621 4.824 74.566 74.358
500 5.357 4.998 74.890 74.844

1000 5.334 5.148 75.214 75.306
all 5.285 5.260 77.850 76.000

Czech 100 4.248 3.857 80.417 78.736
500 4.443 4.404 74.604 74.091

1000 4.533 4.537 73.977 73.728
all 5.091 5.091 73.849 71.325

Danish 100 5.028 4.914 79.890 75.733
500 5.080 4.932 72.494 72.494

1000 5.069 4.939 70.674 70.674
all 5.363 5.176 70.674 70.674

Dutch 100 6.380 5.925 80.204 80.204
500 6.856 7.209 74.158 74.158

1000 6.758 7.223 73.924 73.924
all 8.025 8.201 72.785 72.785

English 100 5.223 5.065 72.734 72.734
500 5.748 5.596 72.197 72.197

1000 5.764 5.808 70.371 69.400
all 6.442 6.464 67.626 67.626

Estonian 100 5.242 5.835 50.874 50.874
500 6.107 5.682 48.666 50.138

1000 6.605 6.289 49.862 50.966
all 6.653 5.706 50.046 50.414

Finnish 100 5.492 4.655 68.906 68.906
500 5.974 5.821 68.442 67.557

1000 6.146 5.846 66.237 66.237
all 7.709 7.420 63.811 62.848

French 100 3.680 3.291 70.243 65.828
500 3.674 3.573 62.685 62.685

1000 3.724 3.677 62.220 61.755
all 3.823 3.823 59.732 59.732

German 100 5.572 4.961 77.083 77.188
500 5.676 5.427 76.637 76.637

1000 5.740 5.740 74.514 74.514
all 6.056 6.056 72.554 73.790

Gothic 100 6.120 6.120 80.046 76.236
500 6.807 6.590 76.325 73.720

1000 6.940 6.562 75.439 73.755
all 7.777 7.178 74.074 72.479

Greek 100 4.186 3.870 66.813 66.813
500 4.105 3.917 69.233 69.233

1000 4.177 4.096 66.339 66.339
all 4.088 3.997 67.203 66.695

Hebrew 100 3.953 3.715 71.615 71.615
500 3.948 3.948 74.295 74.295

1000 3.980 3.856 76.157 72.757
all 4.022 3.945 73.359 73.359

Hindi 100 3.898 3.809 58.776 58.776
500 4.219 4.072 62.645 61.341

1000 4.095 4.095 61.381 61.381
all 4.340 4.319 59.818 59.818

Perplexity Word Error Rate (%)
Language Training size SL MT-SL SL MT-SL
Hungarian 100 5.772 5.048 68.809 68.844

500 5.766 4.990 69.787 69.857
1000 5.579 5.120 69.193 69.053
all 5.592 5.147 69.403 69.403

Indonesian 100 4.818 4.302 77.774 74.451
500 4.650 4.448 70.560 70.560

1000 4.639 4.444 70.682 70.682
all 4.734 4.614 71.160 71.160

Irish 100 3.580 3.434 69.202 69.428
500 3.543 3.491 66.885 66.885

1000 3.594 3.559 66.885 66.885
all 3.594 3.559 66.885 66.885

Italian 100 3.418 3.235 60.659 60.659
500 3.408 3.299 57.976 57.976

1000 3.480 3.310 57.906 57.748
all 3.620 3.506 57.574 57.574

Japanese 100 3.087 2.984 63.968 63.702
500 3.203 3.156 64.016 61.722

1000 3.121 3.141 62.433 61.482
all 3.196 3.221 61.837 59.632

Latin 100 4.800 4.784 82.052 81.377
500 5.094 5.059 78.482 76.479

1000 5.296 5.281 76.024 75.342
all 6.241 6.239 75.179 72.662

Norwegian 100 5.070 4.828 75.248 73.249
500 5.177 4.927 71.129 71.129

1000 5.267 5.163 69.099 68.448
all 5.733 5.632 69.487 66.716

Old Church Slavonic 100 6.017 6.003 73.649 72.107
500 7.220 7.150 69.254 70.246

1000 7.731 7.552 68.758 68.722
all 8.889 8.465 68.067 66.968

Persian 100 3.218 3.079 66.111 64.360
500 3.250 3.298 58.693 58.693

1000 3.275 3.310 58.531 57.093
all 3.339 3.339 58.164 55.354

Polish 100 4.618 4.373 68.314 68.314
500 5.199 5.086 68.402 66.380

1000 5.466 5.475 69.338 64.724
all 6.404 6.184 63.802 63.802

Portuguese 100 4.119 3.675 72.949 72.949
500 3.977 4.084 69.618 69.618

1000 4.176 4.052 69.017 69.017
all 4.288 4.342 68.757 65.491

Romanian 100 7.269 5.405 71.860 71.311
500 7.269 6.288 70.075 69.664

1000 7.269 6.288 70.075 69.664
all 7.269 6.288 70.075 69.664

Slovenian 100 4.970 5.034 72.423 71.985
500 5.199 5.163 71.238 68.027

1000 5.591 5.179 70.242 67.650
all 5.605 5.406 70.875 64.943

Spanish 100 3.138 3.068 67.485 67.485
500 3.103 2.984 66.890 66.890

1000 3.167 3.068 63.851 63.717
all 3.265 3.176 64.702 64.702

Swedish 100 5.161 4.946 74.509 74.509
500 5.278 5.080 73.143 69.934

1000 5.511 5.281 71.004 69.355
all 5.737 5.489 68.878 68.878

Tamil 100 8.651 5.929 66.999 66.667
500 8.243 6.149 64.296 65.481

1000 8.243 6.149 64.296 65.481
all 8.243 6.149 64.296 65.481

Table 2: Detailed experimental results on the Unidep dataset when all other languages are used as
related tasks. 15

Perplexity Word Error Rate (%)
Language Training size SL MT-SL SL MT-SL

Ancient Greek 100 4.084 4.064 81.332 79.890
500 4.166 4.154 79.045 77.993

1000 4.203 4.178 77.802 78.896
all 4.582 4.612 75.596 76.850

Arabic 100 2.281 2.250 74.365 74.365
500 2.306 2.278 69.322 69.322

1000 2.318 2.291 68.583 68.583
all 2.306 2.300 66.595 66.595

Basque 100 5.984 5.984 76.533 71.780
500 6.120 5.989 76.701 67.738

1000 6.231 6.170 76.052 71.841
all 6.760 6.760 75.803 69.064

Bulgarian 100 5.115 4.772 69.294 69.294
500 5.565 5.327 66.451 64.902

1000 5.637 5.432 66.878 64.231
all 6.162 6.162 66.018 64.024

Croatian 100 5.518 4.695 73.665 73.202
500 5.429 4.858 75.723 73.919

1000 5.278 5.085 78.127 76.717
all 5.285 5.163 77.850 77.387

Czech 100 4.183 4.146 78.830 76.088
500 4.471 4.487 75.772 75.114

1000 4.588 4.563 73.770 73.770
all 5.091 5.091 73.849 71.693

Danish 100 4.841 4.814 78.875 77.264
500 4.906 4.870 76.410 74.911

1000 5.114 5.192 70.964 71.012
all 5.363 5.203 70.674 69.562

Dutch 100 6.875 6.134 74.644 74.644
500 7.610 7.310 76.135 76.135

1000 8.042 7.483 73.823 73.589
all 8.025 8.062 72.785 72.098

English 100 5.269 5.148 73.919 73.919
500 5.618 5.502 74.486 70.485

1000 5.841 5.867 75.211 69.153
all 6.442 6.653 67.626 67.538

Estonian 100 5.404 5.927 49.126 49.126
500 6.112 5.636 50.046 50.046

1000 6.607 6.613 50.138 50.414
all 6.653 7.322 50.046 50.046

Finnish 100 5.706 5.257 69.102 67.964
500 5.951 5.538 67.600 66.715

1000 6.116 5.777 66.159 65.406
all 7.709 7.516 63.811 63.558

French 100 3.878 3.322 69.163 68.494
500 3.646 3.570 65.309 62.397

1000 3.720 3.703 59.418 59.418
all 3.823 3.800 59.732 60.785

German 100 5.843 5.169 78.226 76.480
500 5.747 5.727 77.315 72.769

1000 5.752 5.565 73.656 74.190
all 6.056 6.056 72.554 72.264

Gothic 100 6.062 5.774 81.570 75.226
500 6.701 6.274 77.583 73.968

1000 6.955 6.799 74.659 72.780
all 7.777 7.187 74.074 72.391

Greek 100 4.171 3.654 68.912 68.912
500 4.094 3.846 68.810 68.810

1000 4.188 3.926 66.543 66.543
all 4.088 3.964 67.203 66.695

Hebrew 100 3.950 3.777 73.114 73.827
500 3.959 3.821 77.814 77.814

1000 3.975 3.810 74.770 74.770
all 4.022 3.918 73.359 73.359

Hindi 100 4.118 4.026 62.440 60.955
500 4.130 4.134 63.116 60.082

1000 4.080 4.049 60.487 59.886
all 4.340 4.344 59.818 59.341

Perplexity Word Error Rate (%)
Language Training size SL MT-SL SL MT-SL
Hungarian 100 5.724 4.956 69.647 70.171

500 5.684 5.039 68.949 70.555
1000 5.622 5.107 69.158 69.612
all 5.592 5.089 69.403 69.752

Indonesian 100 4.716 4.129 75.472 74.475
500 4.625 4.267 71.792 71.792

1000 4.643 4.463 71.752 71.752
all 4.734 4.572 71.160 71.160

Irish 100 3.679 3.306 66.457 66.457
500 3.565 3.479 65.626 65.626

1000 3.594 3.425 66.885 66.885
all 3.594 3.425 66.885 66.885

Italian 100 3.366 3.209 66.725 62.897
500 3.414 3.356 58.867 58.526

1000 3.407 3.390 57.853 57.075
all 3.620 3.575 57.574 57.276

Japanese 100 3.137 3.103 67.460 68.075
500 3.077 3.099 63.224 63.224

1000 3.143 3.179 61.185 60.887
all 3.196 3.243 61.837 61.837

Latin 100 4.725 4.616 80.918 77.025
500 5.128 5.097 77.432 76.344

1000 5.261 5.227 76.406 74.779
all 6.241 6.235 75.179 73.198

Norwegian 100 5.116 4.940 73.543 73.540
500 5.239 5.098 71.276 70.997

1000 5.277 5.230 69.152 69.152
all 5.733 5.743 69.487 68.132

Old Church Slavonic 100 6.019 5.803 72.001 71.575
500 7.157 7.041 69.024 68.988

1000 7.749 7.321 69.644 67.446
all 8.889 8.662 68.067 68.262

Persian 100 3.221 3.124 64.559 62.459
500 3.240 3.325 57.989 57.989

1000 3.375 3.358 58.597 57.406
all 3.339 3.335 58.164 56.100

Polish 100 4.566 4.508 70.210 63.208
500 5.168 4.962 67.644 65.988

1000 5.437 5.236 68.820 65.622
all 6.404 6.048 63.802 63.802

Portuguese 100 3.720 3.712 74.866 68.903
500 3.966 3.986 71.308 67.409

1000 4.049 3.934 68.822 67.051
all 4.288 4.113 68.757 65.053

Romanian 100 7.105 5.155 69.115 69.389
500 7.269 5.936 70.075 69.664

1000 7.269 5.936 70.075 69.664
all 7.269 5.936 70.075 69.664

Slovenian 100 5.231 4.684 76.267 72.457
500 5.469 4.957 72.760 72.760

1000 5.366 4.953 72.012 69.117
all 5.605 5.300 70.875 66.949

Spanish 100 3.137 3.024 65.528 65.528
500 3.139 3.027 66.221 64.544

1000 3.160 3.045 64.276 64.276
all 3.265 3.137 64.702 62.514

Swedish 100 5.098 4.856 74.347 74.347
500 5.350 5.340 68.920 68.920

1000 5.389 5.301 69.115 67.758
all 5.737 5.558 68.878 66.619

Tamil 100 8.798 6.011 67.046 65.908
500 8.243 6.205 64.296 65.576

1000 8.243 6.205 64.296 65.576
all 8.243 6.205 64.296 65.576

Table 3: Detailed experimental results on the Unidep dataset when the 4 closest languages are used as
related tasks. The closest languages used for each target task are reported in Table 4.16

Target task 4 closest tasks w.r.t. subspace distance (closest first)

Ancient Greek Old Church Slavonic Latin Gothic Hungarian
Arabic Czech Polish Persian Slovenian
Basque Finnish Polish Czech Indonesian
Bulgarian Czech Norwegian Finnish Slovenian
Croatian Estonian Slovenian Czech Finnish
Czech Finnish Norwegian Bulgarian Danish
Danish Norwegian Swedish English Czech
Dutch German Norwegian Danish English
English Norwegian Danish Italian Swedish
Estonian Finnish Swedish Norwegian Polish
Finnish Estonian Czech Swedish Norwegian
French Italian Spanish German English
German Dutch Swedish English French
Gothic Old Church Slavonic Latin Ancient Greek Finnish
Greek Swedish Spanish Czech German
Hebrew Portuguese Norwegian Czech Danish
Hindi Japanese Croatian Tamil Persian
Hungarian Danish Ancient Greek German Portuguese
Indonesian Finnish Czech Bulgarian Norwegian
Irish Polish Czech Greek Arabic
Italian English French Spanish Dutch
Japanese Hindi Persian Arabic Tamil
Latin Old Church Slavonic Ancient Greek Gothic Finnish
Norwegian Danish English Swedish Czech
Old Church Slavonic Latin Gothic Ancient Greek Finnish
Persian Japanese Czech Swedish Finnish
Polish Slovenian Czech Finnish Estonian
Portuguese Hebrew Norwegian Italian Danish
Romanian Finnish Estonian Norwegian Czech
Slovenian Polish Czech Danish Swedish
Spanish French Italian Portuguese Greek
Swedish Danish Norwegian Finnish Estonian
Tamil Finnish Indonesian Basque Croatian

Table 4: Related tasks used in the Unidep experiment. The 4 closest tasks were selected using subspace
distance (i.e. Frobenius norm of the difference between the orthogonal projection matrices) between
the space spanned by the top 50 left singular vectors of their Hankel matrices. The common basis of
prefixes/suffixes (P,S) for these Hankel matrices was obtained by taking the union of the 100 most
frequent prefixes/suffixes for each task.

17

	Introduction
	Preliminaries
	Vector-Valued WFAs for Multitask Learning
	Theoretical Analysis
	Experiments
	Synthetic Data
	Real Data

	Conclusion
	Proofs
	Proof of Theorem 3
	Proof of Corollary 4
	Proof of Proposition 1
	Proof of Theorem 5

	Detailed Results for Experiments on Real Data

