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Abstract. Graph weighted models (GWMs) have recently been pro-
posed as a natural generalization of weighted automata over strings, trees
and 2-dimensional words to arbitrary families of labeled graphs (and hy-
pergraphs). A GWM generically associates a labeled graph with a tensor
network and computes a value by successive contractions directed by
its edges. In this paper, we address the problem of minimizing a GWM
defined over the family of circular strings on some finite alphabet. The
study of GWMs over circular strings is particularly relevant since circular
strings can be seen as the simplest family of graphs with cycles. Despite
the simplicity of this family and of the corresponding GWM model, the
minimization problem is considerably more challenging than in the case
of weighted automata over strings and trees. More precisely, while linear
algebra tools are overall sufficient to tackle the minimization problem
for classical weighted automata (defined over a field), the minimization
of GWMs over circular strings involves fundamental notions from the
theory of finite dimensional algebra. The contributions of this paper are
two-fold: we propose polynomial time algorithms for minimizing and de-
ciding the equivalence of GWMs defined over circular strings and, more
importantly, we show that the theoretical study of GWMs defined over
more general families of graphs will fundamentally rely on the theory of
finite dimensional algebras.

1 Introduction

Functions defined over syntactical structures such as strings, trees and graphs are
ubiquitous in computer science. Automata models allow one to succinctly repre-
sent such functions. In particular, weighted automata can efficiently model func-
tions mapping structured objects to values in a semi-ring. Weighted automata
have been defined to handle functions whose domain are e.g. strings [25, 8],
trees [7, 15] and 2-dimensional words [10]. More recently, Bailly et al. [2] pro-
posed a computational model for functions mapping labeled graphs (or hyper-
graphs) to values in a field (see also [21, Chapter 2]): Graph Weighted Mod-
els (GWMs). GWMs extend the notion of linear representation of a function
defined over strings and trees to functions defined over graphs labeled by sym-
bols in a ranked alphabet: loosely speaking, while string weighted automata can
be defined by associating each symbol in a finite alphabet to a linear map and
tree weighted automata by associating each symbol in a ranked alphabet to a



multilinear map, GWMs are defined by associating each arity k symbol from a
ranked alphabet to a kth order tensor. The computation of a GWM boils down
to mapping each vertex in a graph to the tensor associated to its label and
performing contractions directed by the edges of the input graph to obtain a
value in the supporting field. When restricted to the families of strings, trees or
2-dimensional words, GWMs are expressively equivalent to the classical notions
of weighted automata over these structures.

Weighted automata have recently received interest from the machine learning
community due to their ability to represent functions defined over structured ob-
jects. Efficient (and often consistent) learning algorithms have been developed for
such computational models defined over sequences [3, 18, 5, 9] and trees [4, 1, 13].
Motivated by the relevance of learning functions defined over more general fami-
lies of labeled graphs, our long term objective is to design such efficient learning
algorithms for GWMs. This is however a challenging task. Given the close rela-
tionship between minimization and learning for classical weighted automata (see
e.g. [26, 20, 6]), we take a first step in this direction by tackling the problem of
minimizing GWMs defined over the simple family of circular strings.

Circular strings are strings whose last symbol is connected to the first. A
circular string can be seen as a directed graph where each vertex is labeled by
a symbol from a finite alphabet and is connected to his unique successor (i.e.
a labeled graph composed of a unique cycle). Circular strings are relevant in
biology (see e.g. [19] and references therein) and have been studied from a formal
language perspective in the non-quantitative setting in [23]. The study of GWMs
defined over such graphs is particularly relevant since circular strings are in some
sense the simplest family of graphs with cycles. Moreover, GWMs defined over
the family of circular strings take a simple form making them easily amenable
to theoretical study: such a GWM is given by a set of matrices Aσ for each
symbol σ in a finite alphabet, and maps any circular string σ1σ2 · · ·σk to the
trace of the products of the matrices associated with the letters in the string.
Despite the simplicity of this computational model and its strong connection
with string weighted automata, the minimization problem is considerably more
challenging than in the case of string or tree weighted automata. More precisely,
while the minimization problem can easily be handled using basic notions from
linear algebra for e.g. real-valued string weighted automata (see e.g. [6]), we
show in this paper that the minimization of GWMs over circular strings requires
fundamental concepts from the theory of finite-dimensional algebras (such as the
notions of radical and semi-simplicity).

Contributions. Throughout the paper, we only consider automata defined over
a field of characteristic 0. After introducing notions on weighted automata,
GWMs and finite-dimensional algebras in Section 2, we first tackle the problem
of deciding the equivalence of GWMs defined over circular strings in Section 3.
The study of the equivalence problem is motivated by the simple observation
that two minimal GWMs computing the same function are not necessarily re-
lated by a change of basis, which is in contrast with a classical result stating
that two minimal string weighted automata are equivalent if and only if they



are related by a change of basis. Building from this observation, we unravel the
fundamental notion of semi-simple GWM and we show that any function recog-
nizable by a GWM can be computed by a semi-simple GWM (Corollary 1) and
that two minimal semi-simple GWMs computing the same function are neces-
sarily related by a change of basis (Corollary 2). These two results naturally give
rise to a polynomial time algorithm to decide whether two GWMs over circular
strings are equivalent. We then move on to the minimization problem in Sec-
tion 4, where we give a polynomial time algorithm to minimize a GWM defined
over the family of circular strings which fundamentally relies on the notion of
semi-simple GWM (Corollary 3). While the problem of minimizing a GWM de-
fined over the simple family of circular strings is central to this paper, we see it
as a test bed for developing the theory of GWMs: beyond the minimization and
equivalence algorithms we propose, we believe that one of our main contribu-
tions is to show that the theory of GWMs will rely on advanced concepts from
algebra theory and to unravel fundamental properties that will surely be central
to the study of GWMs defined over more general families of graphs (such as the
one of semi-simple GWM).

1.1 Notations

For any integer n we let [n] = {1, 2, · · · , n}. We denote the set of integers by N
and the fields of real and rational numbers by R and Q respectively. Let F be a
field of characteristic 0, we denote byMn(F) = Fn×n the set of all n×n matrices
over F. We use lower case bold letters for vectors (e.g. v ∈ Fd1) and upper case
bold letters for matrices (e.g. M ∈ Fd1×d2). We denote by In the n× n identity
matrix (or simply I if the dimension is clear from context). Given a matrix M ∈
Fd1×d2 , we denote its entries by Mi,j and we use vec(M) ∈ Fd1d2 to denote the
column vector obtained by concatenating the columns of M. We use ker(A) to
denote the kernel (or null space) of a matrix A. Given two matrices A ∈Mm(F)
and B ∈ Mn(F) we denote their Kronecker product by A ⊗B ∈ Mmn(F) and
their direct sum by A⊕B ∈Mm+n(F): A⊗B is the block matrix with blocks
(Ai,jB)i,j and A⊕B is the block diagonal matrix with A in the upper diagonal
block and B in the lower one. We denote by Σ∗ the set of strings on a finite
alphabet Σ and the empty string by λ. We denote by Σ+ the set of non-empty
strings and by Σk the set of all strings of length k.

2 Preliminaries

We first present notions on weighted automata, graph weighted models and
finite dimensional algebras. The reader is referred to [8, 24, 15] for more details
on weighted automata theory, to [2] and [21, Chapter 2] for an introduction
to graph weighted models, and to [16, 12] for a thorough introduction to finite
dimensional algebras.
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Fig. 1. (left) Graph representation of the string abba where the special vertices labeled
with α and ω denote the beginning and end of the string respectively. (right) In contrast,
the circular string abba has no beginning and no end, it is thus the same object as e.g.
the circular string baab.

2.1 Weighted Automata and GWMs over Circular Strings

Let Σ be a finite alphabet. A weighted finite automaton (WFA) over a field F
with n states is a tuple A = (α, {Aσ}σ∈Σ ,ω) where α,ω ∈ Fn are the initial
and final weight vectors respectively, and Aσ ∈ Mn(F) is the transition matrix
for each symbol σ ∈ Σ. A WFA computes a function fA : Σ∗ → F defined for
each word x = x1x2 · · ·xk ∈ Σ∗ by

fA(x) = α>Ax1Ax2 · · ·Axkω.

We will often use the shorthand notation Ax = Ax1Ax2 · · ·Axk for any word
x = x1x2 · · ·xk ∈ Σ∗. A WFA A with n states is minimal if its number of states
is minimal, i.e. any WFA B such that fA = fB has at least n states. We say that
a function f : Σ∗ → R is WFA-recognizable if there exists a WFA computing it.

Graph weighted models (GWMs) have been introduced as a computational
model over arbitrary labeled graphs and hypergraphs in [2]. In this paper, we
focus on the simple model of GWMs defined over the family of circular strings.
A circular string is a string without a beginning or an end, one can think of it
as a string closed onto itself (see Figure 1).

A d-dimensional GWM M over circular strings on Σ is given by a set of
matrices {Mσ}σ∈Σ ⊂Md(F). It computes a function fM : Σ+ → F defined1 for
each word x = x1x2 · · ·xk ∈ Σ+ by

fM (x) = Tr(Mx1Mx2 · · ·Mxk) = Tr(Mx).

By invariance of the trace under cyclic permutation, we have fM (x1x2 · · ·xk) =
fM (x2x3 · · ·xkx1) = fM (x3x4 · · ·xkx1x2) = · · · . This is in accordance with the
definition of a circular string: for any string x′ obtained by cyclic permutation
of the letters of a string x, both x and x′ correspond to the same circular string.
Similarly to WFAs, a GWM is minimal if its dimension is minimal and a function
f : Σ+ → F is GWMcirc-recognizable if it can be computed by a GWM over
circular strings.

1 Observe that we exclude the empty string from the domain of fM , this is on purpose
since fM (λ) would be the dimension of M (using the convention Mλ = I): given
two GWMs of different dimensions computing the same function on Σ+, we want to
consider them as equivalent even though they disagree on λ.



It is immediate to see that there exist WFA-recognizable functions that are
not GWMcirc-recognizable, this is the case of any WFA-recognizable function
that is not invariant under cyclic permutation of letters in a word. In con-
trast, one can easily show that any GWMcirc-recognizable function is WFA-
recognizable. More precisely, we have the following result.

Proposition 1. For any d-dimensional GWM M = {Mσ}σ∈Σ over circular
strings on Σ, the WFA with d2 states (α, {Aσ}σ∈Σ ,ω) where α = ω = vec(Id)
and Aσ = Id ⊗Mσ for each σ ∈ Σ, is such that fM (x) = fA(x) for all x ∈ Σ∗.

Proof. For any w = w1 · · ·wn ∈ Σ∗ we have fM (w) = Tr(Mw) =
∑
i∈[d] M

w
i,i =∑

i∈[d] e
>
i Mwei where ei is the i-th vector of the canonical basis of Fd. Since

ι = τ = (e>1 , · · · , e>d )> and Aσ = I ⊗Mσ is the block-diagonal matrix with
Mσ repeated d times on the diagonal, one can check that fA(w) = α>Awω =∑
i∈[d] e

>
i Mwei = fM (w). ut

It follows from this proposition that the learning and equivalence problems for
GWMs could be handled by using the corresponding algorithms for WFAs. We
will nonetheless study the equivalence problem in the next section2, where we
show that tackling this problem without falling back on the theory of WFAs allow
us to unravel fundamental properties of GWMs that will be particularly relevant
to further studies (moreover, the minimization problem obviously cannot be
handled in such a way).

2.2 Finite-Dimensional Algebras

An algebra A over a field F (or F-algebra) is a vector space over the field F
equipped with a bilinear operation (called multiplication or product). An algebra
is associative if its product is associative and it is finite-dimensional if it is of
finite dimension as a vector space over F. In this paper, we will only consider
finite-dimensional associative algebras. A sub-algebra B of an algebra A is a
linear subspace of A which is closed under product (i.e. B equipped with the
operations of A is an algebra itself).

A classical example of finite-dimensional algebra is the set L(V ) of linear
operators on some finite-dimensional vector space V (where the product is com-
position). In this particular example, the algebra L(V ) is isomorphic to the full
matrix algebra Md(F), where d is the dimension of V ; we will mainly focus on
matrix algebras in this paper, i.e. sub-algebras of the full matrix algebraMd(F)
for some d (an example of such an algebra is the set of d × d upper triangular
matrices). In particular, we will often consider the algebra generated by a finite
set of matrices {Aσ}σ∈Σ ⊂Md(F) for some finite alphabet Σ, that is the set of

2 The learning problem has been previously considered in [21] and in the journal
version of [2] to appear in a special issue of the Journal of Computer and System
Sciences (in press).



all finite linear combinations of matrices of the form Ax = Ax1Ax2 · · ·Axk for
x = x1x2 · · ·xk ∈ Σ∗. More formally, if we denote by A this algebra, we have

A =

{
n∑
i=1

αiA
wi : n ∈ N, α1, · · · , αn ∈ F, w1, · · · , wn ∈ Σ∗

}
.

LetA be a finite-dimensional algebra over F. A sub-algebra X ofA is called an
ideal of A if both xa ∈ X and ax ∈ X for any x ∈ X , a ∈ A (i.e. X is both left and
right A-invariant), which we will denote by AX = XA = A. A sub-algebra X of
A is nilpotent if there exists some integer k such that X k = {xk : x ∈ X} = {0}.
The factor algebra A/X of an algebra A by a sub-algebra X is the algebra
consisting of all cosets a + X for a ∈ A, in other words A/X is the quotient of
A by the equivalence relation (a ∼ b if and only if a− b ∈ X ). The radical3 of A
is the maximal nilpotent ideal of A and will be denoted by Rad(A). An algebra
A is semi-simple if its radical is {0}.

Let us illustrate these definitions with a very simple example. Let G ⊂M2(R)

be the algebra generated by the matrix G =

[
1 1
0 1

]
. One can easily check that

G =

{[
α β
0 α

]
: α, β ∈ R

}
and is thus of dimension 2. Consequently, both

G1 =

{[
α 0
0 α

]
: α ∈ R

}
and G2 =

{[
0 β
0 0

]
: β ∈ R

}
(1)

are sub-algebras of G. Moreover, G2 is a nilpotent ideal and one can check that
it is maximal, i.e. Rad(G) = G2 and hence G is not semi-simple.

Intuitively, the radical of an algebra A contains its bad elements (in the sense
that these elements annihilate all simple A-modules). In our previous example,
this bad property translates into the fact that the non-zero elements of G2 cannot
be diagonalized. We will use two fundamental results from the theory of finite
dimensional algebra. The first one is the Wedderburn-Malcev theorem which
states that (under some conditions on the ground field F) the elements of the
radical can be filtered out from the algebra, i.e. one can find a sub-algebra of A
that is isomorphic to A/Rad(A) (see e.g. [16, Theorem 6.2.3]).

Theorem 1 (Wedderburn-Malcev Theorem). Let A be a finite-dimensional
algebra over a field of characteristic 0. There exists a semi-simple subalgebra Ã
of A which is isomorphic to A/Rad(A) and such that A = Ã ⊕ Rad(A) (direct
sum of vector spaces).

Going back to the example of the algebra G described above, we showed that it
is not semi-simple, however one can easily check that G/Rad(G) is isomorphic
to the algebra G1 in Eq. (1) which is semi-simple, and furthermore that G =
G1 ⊕ Rad(G).

3 Note that this definition is specific to the finite-dimensional case; for general rings,
there exist distinct non-equivalent definitions of radicals, which all agree with the
one given here in the case of finite-dimensional algebras.



The second fundamental result we will need is related to the notion of repre-
sentation of an algebra. A representation of an F-algebra A is a homomorphism
of A into the algebra L(V ) of the linear operators on some vector space V (over
F). Two representations ρ : A → L(V ) and τ : A → L(W ) are similar if there
exists an isomorphism φ : V → W such that ρ(a) = φ−1τ(a)φ for all a ∈ A.
For semi-simple algebras, the notion of similar representations is fundamentally
related to the trace operator, which will be particularly relevant to the present
study. Formally, we have the following theorem (see e.g. [16, Corollary 2.6.3]).

Theorem 2. Let ρ and τ be two representations of a semi-simple algebra A
over a field of characteristic 0. These representations are similar if and only if
Tr(ρ(a)) = Tr(τ(a)) for all a ∈ A.

3 Semi-Simple GWMs and the Equivalence Problem

In this section, we study the equivalence problem: given two GWMs over circular
strings, how can we decide whether they compute the same function? In light of
Proposition 1, one could solve this problem by simply converting the two GWMs
into WFAs and check whether these two WFAs compute the same function;
indeed the equivalence problem for WFAs defined over a field is decidable in
polynomial time [8]. Nonetheless, we will tackle this problem without relying
on this proposition and, by doing so, we will unravel the notion of semi-simple
GWM which will be relevant to the study of the minimization problem in the
next section (and which should also be central to the study of GWMs defined
over more general families of graphs).

3.1 Semi-Simplicity, Nilpotent Matrices and Traces

Let A be a finite dimensional matrix algebra. Recall that the radical of A is
its maximal nilpotent ideal. A useful characterization of the elements of the
radical relies on the notion of strongly nilpotent elements: A ∈ A is strongly
nilpotent if AX is nilpotent for any X ∈ A. It turns out that the radical of A
is exactly the set of its strongly nilpotent elements [16, Corollary 3.1.10]. Since
the computation of a GWM on a circular string boils down to applying the trace
operator, we will leverage this property to relate the notions of radical and semi-
simplicity to simple properties of the elements of A with respect to the trace
operator. We start with a simple lemma relating nilpotency and trace.

Lemma 1. Let F be a field of characteristic 0 and let A ∈ Md(F). Then A is
nilpotent if and only if Tr(An) = 0 for all n ≥ 1.

Proof. Let A be a nilpotent matrix and let k be such that Ak = 0. Suppose
Av = λv for some v 6= 0 (where λ could belong to an algebraically closed field
extension of F). Then Akv = λkv = 0 hence λ = 0 since F is of characteristic 0,
thus A has only 0 eigenvalues and Tr(An) = 0 for all n ≥ 1.

Conversely, suppose that Tr(An) = 0 for all n ≥ 1. Then, we have Tr(P (A)) =
0 for any polynomial P with constant term 0. Suppose that A has a non-zero



eigenvalue λ and let m > 0 be its multiplicity. Choose a polynomial P such
that P (λ) = 1, P (0) = 0 and P (µ) = 0 for any eigenvalue µ of A distinct from
λ. We then have 0 = Tr(P (A)) = m, a contradiction. Hence A has only zero
eigenvalues and is nilpotent. ut

One can use the previous lemma to show that an element A ∈ A is strongly
nilpotent if and only if Tr(AX) = 0 for all X ∈ A, which leads to the following
useful characterization of the semi-simplicity of an algebra.

Proposition 2. Let A ⊂Md(F) be a matrix algebra. We have

Rad(A) = {A ∈ A : Tr(AX) = 0 for all X ∈ A} .

Consequently, A is semi-simple if and only if for all A ∈ A different from 0
there exists X ∈ A such that Tr(AX) 6= 0.

Proof. We will show that A ∈ A is strongly nilpotent if and only if Tr(AX) = 0
for all X ∈ A. The proposition will then directly follows from the fact that
Rad(A) is the set of strongly nilpotent elements of A and from the fact that A
is semi-simple if and only if Rad(A) = {0}.

Let A ∈ A be such that Tr(AX) = 0 for all X ∈ A. Since X(AX)n−1 ∈ A
for all n ≥ 1 and all X ∈ A we have Tr((AX)n) = 0 for all n ≥ 1 and all X ∈ A,
hence AX is nilpotent for all X ∈ A by Lemma 1, i.e. A is strongly nilpotent.
Conversely, let A be a strongly nilpotent element of A. By Lemma 1 we have
Tr((AX)n) = 0 for all X ∈ A and all n ≥ 1, in particular Tr(AX) = 0. ut

3.2 Equivalence of GWMs

We now consider the problem of deciding whether two GWMs are equivalent.
Before considering GWMs defined over circular strings, let us first briefly show
how one can decide whether two real-valued WFAs compute the same function.
One way to address this problem relies on the following result: two minimal
real-valued WFAs computing the same function are related by a change of basis.
Note that it is easy to check that WFAs are invariant under a change of basis
of their weight vectors and transition matrices, the following proposition show
that such a change of basis is actually the only way for two minimal WFAs to
compute the same function.

Proposition 3. [5, Corollary 4.2] If two real-valued WFAs A = (α, {Aσ}σ∈Σ ,ω)
and Ã = (α̃, {Ãσ}σ∈Σ , ω̃) with d states are minimal and compute the same func-
tion, i.e. fA = fÃ, then there exists an invertible matrix P ∈Md(R) such that

α> = α̃>P, ω = P−1ω̃ and Aσ = P−1ÃσP for each σ ∈ Σ.

Hence, to decide whether two WFAs compute the same function one can simply
minimize them and check whether the weight vectors and transition matrices
obtained after minimization are related by a change of basis (which can both
be done in polynomial time). In contrast, one can easily find an example of two



minimal GWMs over circular strings whose matrices are not related by a change
of basis. Consider the constant function f(x) = 2 for all x ∈ Σ+. One can check
that the two GWMs G and G̃ with 2 states defined by the matrices

G =

[
1 1
0 1

]
and G̃ =

[
1 0
0 1

]
respectively are minimal and compute f , however G and G̃ are not similar.

Let us now introduce the notion of semi-simple GWM. We say that a GWM
A defined by a set of matrices {Aσ}σ∈Σ ⊂Md(F) is semi-simple if the algebra A
generated by the matrices {Aσ}σ∈Σ is semi-simple. It follows from the example
presented in Section 2.2 that G is not semi-simple while G̃ is a semi-simple GWM
computing the GWMcirc-recognizable function f . We will now show that this
simple example can be generalized in the sense that any GWMcirc-recognizable
function can be computed by a semi-simple GWM. This non-trivial result relies
on the following proposition which is a direct consequence of the Wedderburn-
Malcev theorem.

Theorem 3. Let A ⊂ Md(F) be a matrix algebra over a field of characteristic
0. Then there exists a semi-simple sub-algebra Ã of A and a surjective homo-
morphism π : A → Ã such that Tr(A) = Tr(π(A)) for all A ∈ A.

Proof. By Theorem 1 there exists a semi-simple sub-algebra Ã of A which is
isomorphic to A/Rad(A) and such that A = Ã ⊕ Rad(A) (direct sum of vector
spaces). Let π : A → Ã be the projection associated with this direct sum. Then
for any A ∈ A we have

Tr(A) = Tr(π(A) + (1− π)(A)) = Tr(π(A)) + Tr((1− π)(A)) = Tr(π(A)).

Indeed, since (1− π)(A) ∈ Rad(A), it is nilpotent, hence its trace is zero. ut

Using the notations from Theorem 3, it follows that for any d-dimensional GWM
A given by a set of matrices {Aσ}σ∈Σ ⊂Md(F) generating the algebra A, the d-
dimensional Ã given by the matrices {Ãσ = π(Aσ)}σ∈Σ is a semi-simple GWM
computing the function fA, hence the following corollary.

Corollary 1. Any GWMcirc-recognizable function can be computed by a semi-
simple GWM.

Given a finite dimensional algebra A, one can compute the surjective homo-
morphism π from Theorem 3 in polynomial time when F allows efficient arith-
metic computations (e.g. F = Q) [11, 14]. The algorithm takes as input a basis
a1, · · · , an of A (as a vector space) and the structure coefficients of the alge-
bra (which are the scalars cki,j ∈ F satisfying aiaj =

∑
k c

k
i,jak). Since one can

easily compute a basis and the structure coefficients of a matrix algebra A given
a set of generators {Aσ}σ∈Σ in polynomial time, it follows that any GWM can
be transformed in polynomial time into a semi-simple GWM (of the same di-
mension) computing the same function.



We will now show that a result similar to Proposition 3 holds for semi-
simple GWMs: two semi-simple GWMs of the same dimension compute the
same function if and only if they are related by a change of basis. This result
relies on the following theorem.

Theorem 4. Let Σ be a finite alphabet and let A,B ⊂ Md(F) be the algebras
generated by the sets of matrices {Aσ}σ∈Σ and {Bσ}σ∈Σ respectively.

If A and B are semi-simple and Tr(Aw) = Tr(Bw) for all w ∈ Σ∗ then A
is isomorphic to B. Moreover, the mapping φ̃ : A → B defined by extending the
mapping

φ : Ax 7→ Bx for all x ∈ Σ∗

by linearity is an isomorphism.

Proof. The mapping φ is by construction a trace-preserving surjective semi-
group homomorphism. We first show4 that φ can be extended to a homomor-
phism φ̃ : A → B. By definition, any A ∈ A can be written as A =

∑n
i=1 αiA

xi

for some n ∈ N, α1, · · · , αn ∈ F, x1, · · · , xn ∈ Σ∗. We will show that the mapping

φ̃ :

n∑
i=1

αiA
xi 7−→

n∑
i=1

αiφ(Axi)

is well-defined. By construction of φ̃, it suffices to show that if
∑n
i=1 αiA

xi = 0

for some αi ∈ F, xi ∈ Σ∗, then φ̃(
∑n
i=1 αiA

xi) = 0. Suppose
∑n
i=1 αiA

xi = 0,
then

∑n
i=1 αiA

xiAx = 0 for any x ∈ Σ∗. By linearity of the trace and since φ is
a trace-preserving morphism, it follows that

0 =

n∑
i=1

αi Tr [AxiAx] =

n∑
i=1

αi Tr [φ(AxiAx)] =

n∑
i=1

αi Tr [φ(Axi)φ(Ax)]

= Tr

[(
n∑
i=1

αiφ(Axi)

)
φ(Ax)

]
= Tr

[
φ̃

(
n∑
i=1

αiA
xi

)
φ(Ax)

]

for all x ∈ Σ∗. By linearity of the trace and since φ is surjective, we thus have

Tr
[
φ̃ (
∑n
i=1 αiA

xi) B
]

= 0 for any B ∈ B, hence φ̃ (
∑n
i=1 αiA

xi) belongs to

Rad(B) by Proposition 2 and must be 0 since B is semi-simple.
One can easily check that φ̃ is trace-preserving, is surjective and is a ho-

momorphism. It remains to show that φ̃ is injective. Let A ∈ A be such that
φ̃(A) = 0. Since φ̃ is a homomorphism we have φ̃(AX) = 0 for any X ∈ A,
and thus 0 = Tr(φ̃(AX)) = Tr(AX) for all X ∈ A. Hence A ∈ Rad(A) by
Proposition 2 and must be 0 since A is semi-simple. ut

The previous theorem can be leveraged to show that if two semi-simple GWMs
of the same dimension compute the same function, then they are related by
a change of basis (note that the converse of this statement is immediate since

4 This part of the proof is adapted from the proof of Proposition 3.1 in [17].



the trace is a basis independent operator). Let A and B be two d-dimensional
semi-simple GWMs computing the same function over circular strings on a finite
alphabet Σ, and let A,B ⊂ Md be the algebras generated by their respective
sets of matrices {Aσ}σ∈Σ and {Bσ}σ∈Σ . First observe that the identity mapping
ρ : A → L(Fd) defined by ρ(A) = A for all A ∈ A is (trivially) a representation
of the algebra A. Now, since A and B compute the same function and are semi-
simple, we have Tr(Aw) = Tr(Bw) for all w ∈ Σ∗ and it follows from Theorem 4
that A is isomorphic to B; let φ̃ : A → B be the isomorphism defined in this
theorem. Then, the mapping τ : A → L(Fd) defined by τ(A) = φ̃(A) for all
A ∈ A is also a representation of A, and since A is semi-simple it follows from
Theorem 2 that ρ and τ are similar. That is, there exists an invertible matrix
P ∈Md(F) such that ρ(A) = P−1τ(A)P for all A ∈ A. In particular we have

Aσ = ρ(Aσ) = P−1τ(Aσ)P = P−1φ̃(Aσ)P = P−1BσP

for all σ ∈ Σ, hence the following corollary.

Corollary 2. Two d-dimensional semi-simple GWMs A and B compute the
same function if and only if they are related by a change of basis, i.e. there
exists an invertible matrix P ∈Md(F) such that Aσ = P−1BσP for all σ ∈ Σ.

In the case where F allows for efficient arithmetic computations (e.g. F = Q),
it follows that the equivalence of GWMs can be decided in polynomial time.
Indeed, given two GWMs A and B of the same dimension defined by the matrices
{Aσ}σ∈Σ and {Bσ}σ∈Σ respectively, one can first transform them into semi-
simple GWMs using Theorem 3 and the algorithm in [11, 14], and then check
whether the resulting matrices are related by a change of basis. The case where
the two GWMs are not of the same dimension can be easily handled. Without
loss of generality, suppose that A and B are semi-simple GWMs of dimension
d and d′ respectively with d′ < d. One can construct a d-dimensional GWM B̃
computing the same function as B by considering the block-diagonal matrices
B̃σ = Bσ ⊕ 0 for each σ ∈ Σ (where 0 is the (d− d′)× (d− d′) matrix with all
entries equal to 0). It is easy to check that B̃ is semi-simple if B is semi-simple,
hence one can decide if A is equivalent to B by checking whether the matrices
Aσ and B̃σ are related by a change of basis.

4 Minimization of GWMs over Circular Strings

We now turn to the minimization problem: given a GWM A, can we find a
minimal GWM computing fA? We will show that the answer is in the positive
and that such a minimal GWM can be computed in polynomial time. We start
with a technical lemma that generalizes the classical result stating that for any
d× d matrix A, the kernel of Ad is equal to the kernel of Ad+k for any k ≥ 0.

Lemma 2. Let {Aσ}σ∈Σ ⊂ Md(F) be a finite set of matrices. Then for all
k ≥ 0 we have ⋂

x∈Σd

ker(Ax) =
⋂

y∈Σd+k

ker(Ay).



Proof. For any integer i, let Ei =
⋂
x∈Σi ker(Ax). We start by showing that

if Ei = Ei+1 for some i then Ei+1 = Ei+2. The inclusion Ei+1 ⊆ Ei+2 is
immediate. Suppose Ei = Ei+1 for some integer i. If v ∈ Ei+2 then Aσv ∈
ker(Ax) for all x ∈ Σi+1 and all σ ∈ Σ, i.e. Aσv ∈ Ei+1 = Ei for all σ ∈ Σ,
which implies Aσv ∈ ker(Ay) for all y ∈ Σi and all σ ∈ Σ from which v ∈ Ei+1

follows directly.
To conclude, since each Ei is a linear subspace of Fd, Ei ( Ei+1 implies

dimEi < dimEi+1, hence there must exists an i for which Ei = Ei+1 and this i
cannot be greater than d. ut

It turns out that the linear space E =
⋂
x∈Σd ker(Ax) is not relevant to the

computation of a GWM A with matrices {Aσ}σ∈Σ , i.e. we can project each
matrix Ax onto the orthogonal complement of E without changing the function
computed by A. This is shown in the following theorem.

Theorem 5. Let A be a GWM given by the set of matrices {Aσ}σ∈Σ ⊂Md(F).
Consider the linear space

E =
⋂
x∈Σd

ker(Ax) = {v ∈ Fd : Axv = 0 for all x ∈ Σd}

and let Π ∈ Fd×d be the matrix of the orthogonal projection onto E.
Then, the GWM Â given by the matrices Âσ = Aσ(I −Π) for each σ ∈ Σ

computes the same function on circular strings as A.

Proof. Let A be the algebra generated by the matrices {Aσ}σ∈Σ . Let us first
observe that E is A-invariant, which follows from Lemma 2. Indeed, if v ∈ E and
y ∈ Σ∗ we have AxAyv = 0 for any x ∈ Σd (since |xy| ≥ d), hence Ayv ∈ E;
the extension to an arbitrary element of A is immediate by linearity. This implies
that for any A ∈ A, we have

ΠAΠ = AΠ and (I−Π)AΠ = 0. (2)

Now, let k ≥ 1, let x = x1x2 · · ·xk ∈ Σk and let P1 = Π and P2 = I −Π.
We can decompose Ax into

Ax =

k∏
i=1

Axi =

k∏
i=1

Axi(P1 + P2) =
∑

j1,··· ,jk∈{1,2}

Ax1Pj1A
x2Pj2 · · ·AxkPjk

= Âx + Ax1ΠAx2Π · · ·AxkΠ +
∑

j1,··· ,jk∈{1,2} s.t.

∃r,r′:jr 6=j
r′

Ax1Pj1A
x2Pj2 · · ·AxkPjk .

We will show that the traces of all the summands in this last expression, except
for the first one, are equal to 0. First, using Eq. 2 we have Ax1ΠAx2Π · · ·AxkΠ =
AxΠ.Moreover, for any integer s such that sk ≥ d we have (AxΠ)s = Axs

Π = 0
by definition of E and by Lemma 2, thus AxΠ is nilpotent and its trace is 0
by Lemma 1. For the remaining terms, let j1, · · · , jk ∈ {1, 2} not all equal. Let



l ∈ [k] be an index such that jl = 2 and jl+1 = 1 where l + 1 = l + 1 if l < k
and 1 otherwise. Using the invariance of the trace under cyclic permutations of
a matrix product, we obtain

Tr(Ax1Pj1A
x2Pj2 · · ·AxkPjk) = Tr(AxlPjlA

x ¯l+1Pjl+1
· · · )

= Tr(Axl(I−Π)Axl+1Π · · · ) = 0

where we used Eq. 2 again for the last equality. To conclude, we have shown that
Tr(Ax) = Tr(Âx) for all x ∈ Σ∗, hence A and Â compute the same function on
circular strings. ut

Moreover, we now show that the subspace E from the previous theorem can be
used to obtain a characterization of the minimality of a GWM.

Theorem 6. Let A be a GWM given by the set of matrices {Aσ}σ∈Σ ⊂Md(F).
Then, A is minimal if and only if the linear space

E = {v ∈ Fd : Axv = 0 for all x ∈ Σd}

is trivial, i.e. E = {0}.

Proof. Suppose that E is not trivial and let Π be the matrix of the orthogonal
projection onto E. Then, the rank R of I −Π is strictly less than d and there
exists an orthogonal matrix U ∈ Rd×R such that I−Π = UU>. It follows from
the previous proposition that, for any non-empty word x = x1 · · ·xk, we have

Tr(Ax) = Tr(Ax1(I−Π)Ax2(I−Π) · · ·Axk (I−Π))

= Tr(Ax1UU>Ax2UU> · · ·AxkUU>) = Tr((U>Ax1U)(U>Ax2U) · · · (U>AxkU)).

Hence, the R-dimensional GWM given by the matrices Âσ = U>AσU computes
the same function as A, showing that A is not minimal.

Now if E = {0}, suppose that there exists a d′-dimensional GWM B with
d′ < d (given by the matrices {Bσ}σ∈Σ ⊂Md′(F)) computing fA. Let A (resp.
B) be the algebra generated by the matrices {Aσ}σ∈Σ (resp. {Bσ}σ∈Σ). By
Corollary 1, we can assume that both A and B are semi-simple GWMs, i.e. that
the algebras A and B are semi-simple. For each σ ∈ Σ, let B̂σ = Bσ ⊕0 ∈ Rd×d
be the block diagonal matrix having Bσ in the upper diagonal block and 0’s
elsewhere. Let B̂ be the algebras generated by the matrices {B̂σ}σ∈Σ ⊂Md(F).
It is easy to check that the GWM B̂ computes the same function as A and B
and that the algebra B̂ is semi-simple (it is indeed isomorphic to the semi-simple
algebra B). It then follows from Corollary 2 that there exists an invertible matrix

P ∈Md(F) such that Aσ = PB̂σP−1 for all σ ∈ Σ. Let ed be the dth vector of

the canonical basis of Fd, by definition of B̂σ we have B̂σed = 0 for any σ ∈ Σ,
and consequently AσPed = 0 for any symbol σ, showing that Ped ∈ E and
E 6= {0}, a contradiction. ut

It follows from the two previous theorems that by restricting the linear operators
Aσ of a GWM A to the subspace E⊥, one can obtain a minimal GWM computing
fA. We formally state this result in the following corollary.



Corollary 3. Let A be a GWM given by the matrices {Aσ}σ∈Σ ⊂ Md(F) and
let Π be the matrix of the orthogonal projection onto the space E =

⋂
x∈Σd ker(Ax).

If U ∈ Fd×R is an orthogonal matrix such that I − Π = UU>, where R is
the dimension of E⊥, then the R-dimensional GWM Â given by the matrices
Âσ = U>AσU is a minimal GWM computing fA.

Proof. Using the invariance of the trace under cyclic permutations of a matrix
product, it directly follows from Theorem 5 that fÂ = fA. Moreover, one can

check that Ê =
⋂
x∈Σd ker(Âx) = {0} by construction of the matrices Âσ, hence

Â is minimal by Theorem 6. ut

We showed that a GWM can be minimized by restricting its matrices to the
subspace E⊥. In order to do so, one needs to compute a basis a of the space E =⋂
x∈Σd ker(Ax). This can naively be done by first computing ker(Ax) for each

x ∈ Σd and then computing a basis for the intersection of these linear subspaces,
however the complexity of this approach is exponential in the dimension d. We
show in the following proposition that for semi-simple GWMs, one simply needs
to compute a basis of the space

⋂
σ∈Σ ker(Aσ), which can be done in polynomial

time (provided that the ground field F admits efficient symbolic arithmetic, e.g.
F = Q).

Proposition 4. Let A ⊂Md(F) be the finite dimensional algebra generated by
the set of matrices {Aσ}σ∈Σ. Then if A is semi-simple we have⋂

x∈Σd

ker(Ax) =
⋂
σ∈Σ

ker(Aσ).

Proof. For any integer i ≥ 1, let Ei =
⋂
x∈Σi ker(Ax). Recall from the proof

of Lemma 2 that Ei ⊂ Ei+1 for all i and that Ei = Ei+1 implies Ei = Ei+k
for any integer k ≥ 0, hence it will be sufficient to show that E1 = E2. One
can check that each Ei is A-invariant, i.e. each Ei is an A-module. Since A is
semi-simple, any A-module is semi-simple [16, Theorem 2.6.2], which implies
that if M is an A-module, every submodule U of M has a complement [16,
Proposition 2.2.1], i.e. there exists an A-module V such that M = U ⊕ V . Now
since E1 is a submodule of the A-module E2, E1 has a complement U in E2, i.e.
U is A-invariant and E2 = E1 ⊕ U . Let v ∈ U . On the one hand, since v ∈ E2

we have Aσ1Aσ2v = 0 for all σ1, σ2 ∈ Σ, hence Aσv ∈ E1 for all σ ∈ Σ. On the
other hand, we have Aσv ∈ U for all σ ∈ Σ since U is A-invariant. It follows
that Aσv = 0 for all σ ∈ Σ, hence v ∈ E1 and since v ∈ U we have v = 0. To
conclude, we have U = {0}, hence E1 = E2 and consequently E1 = Ed. ut

Since a GWM can be transformed into an equivalent semi-simple GWM in poly-
nomial time (see Corollary 1 and the following discussion), the minimization of
a GWM defined over circular strings can be achieved in polynomial time by first
converting it to a semi-simple GWM and then applying Corollary 3 with Propo-
sition 4. The overall minimization algorithm is summarized in Algorithm 1.



Algorithm 1 Minimization of a GWM defined over circular strings

Input: A d-dimensional GWM A given by a set of matrices {Aσ}σ∈Σ ⊂Md(F).
Output: A minimal GWM Â computing fA.
1: Let A be the algebra generated by the matrices {Aσ}σ∈Σ .
2: Compute a basis (A1, · · · ,An) of A (as an F-vector space) and the structure coef-

ficients cki,j ∈ F for i, j, k ∈ [n] satisfying AiAj =
∑n
k=1 c

k
i,jAk.

3: Compute the sub-algebra Ã and the corresponding surjective homomorphism π :
A → Ã satisfying A = Rad(A) ⊕ Ã and Ã ∼= A/Rad(A) (using the algorithm
from [14], see Theorem 3).

4: Let Ã be the semi-simple GWM given by the set of matrices {Ãσ = π(Aσ)}σ∈Σ .
5: Compute a basis of E1 = {v ∈ Fd : Ãσv = 0 for all σ ∈ Σ} =

⋂
σ∈Σ ker(Ãσ).

6: Let Π ∈ Fd×d be the matrix of the orthogonal projection onto E1.
7: Let R be the rank of I−Π and let U ∈ Fd×R be an orthogonal matrix such that

I−Π = UU>.
8: return The R-dimensional GWM given by the matrices {Âσ = U>ÃσU}σ∈Σ .

5 Conclusion

We proposed polynomial time algorithms to handle both the minimization and
the equivalence problems for GWMs defined over circular strings. By doing so,
we unraveled fundamental notions from algebra theory that will be central to
the study of GWMs. The next step is of course to try to extend the results
obtained in this paper to GWMs defined over more general families of graphs.
One promising direction we are currently investigating relies on extending the
notion of semi-simple GWM, which was central to the present study, to GWMs
defined over arbitrary families of labeled graphs: by opening any edge e in a graph
G one obtains a graph Ge with two free ports (i.e. edges having one end that is
not connected to any vertex) which would be mapped by a d-dimensional GWM
A to a matrix AGe ∈Md(F). For circular strings, opening an edge corresponds
to choosing a particular position in the circular string leading to an actual string
x ∈ Σ∗ which is mapped to Ax by the GWM. For arbitrary labeled graphs, we
have fA(G) = Tr(AGe) similarly to the case of circular strings. One can then
consider the algebra A generated by the matrices AGe for any graph G in some
family of graphs and any edge e in G, and define a semi-simple GWM as a
GWM for which this algebra A is semi-simple (note that one exactly recovers
the notion of semi-simple GWM introduced here in the special case of circular
strings). Hence, the fundamental results from algebra theory we leveraged here
should be directly relevant to the study of general GWMs. Beyond minimization,
we intend to study the problem of approximate minimization (such as the ones
considered in [6] and [22] for string and tree weighted automata) along with
the closely related problem of learning for GWMs defined over richer families of
graphs than the one of circular strings.
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