Electronic Communications of the EASST

Volume X (2010)

Proceedings of the
4th International Workshop on
Multi-Paradigm Modeling
(MPM 2010)

Towards Transformation Rule Composition
Mark Asztalos, Eugene Syriani, Manuel Wimmer and Marouaessi€ntini

13 pages

Guest Editors: Vasco Amaral, Hans Vangheluwe, Cécile Hardebolle, Lazlo Lengyel

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Towards Transformation Rule Composition

Mark Asztalos®, Eugene Syrian?, Manuel Wimmer? and Marouane Kessentinf

1 Budapest University of Technology and Economics, Budapg$i, Hungary
asztalos@aut.bme.hu
2 McGill University, Montréal, Québec, Canada H3A 2A7
esyria@cs.mcgill.ca
3 Vienna University of Technology, 1040 Wien, Austria
wimmer@big.tuwien.ac.at
4 DIRO, Université de Montréal, Montréal, Québec, Canada B3I
kessentm@iro.umontreal.ca

Abstract: Many model transformation problems require different rimediate
transformation steps. For example, platform-specific fseo@@SM) are often gener-
ated from platform-independent models (PIM) by chains ofleddransformations.
This requires the presence of several intermediate meteimdetween those of
the PIM and the PSM. Thus, most of the effort is needed to deftnensformation
mechanism for each intermediate step. The solution praposthis paper is to
investigate whether it is possible to generate a singlestoamation from a chain of
transformations, solely involving the initial PIM and fireREM meta-models. The
presented work focuses on the composition of transformsiti the rule level. We
apply the automatic procedure for composing rules in théscoiof the evolution of
the Enterprise Java Beans (EJB) language, transforming biddels into EJB 2.0
models and then to EJB 3.0 models.

Keywords: rule composition, transformation chain, transitive tfanmation

1 Introduction

Nowadays, software platforms evolve very rapidly. Thislgarue for modelling languages,
which have to reflect the evolution of the underlying platisr The evolution of a modelling
language requires one to adapt its meta-model as well as adglriransformation involving it.
The task of adapting the transformations to the new versidinedlanguage can be very tedious
and error prone, especially when this is done manually. ketale the example scenario of
generating platform-specific models (PSMs) from platfonaependent models (PIMs). Due to
the continuous evolution of the platform, while severalsi@ns of the platform-specific meta-
model have to be employed, transformations between thetemmdel versions are necessary
for migrating the PSMs at versianto PSMs at version-+ 1. These transformations can be also
reused within a model transformation chain for transfogrenPIM over several intermediate
meta-models into a PSM for the latest platform version. Qivee, such transformation chains
naturally become larger and larger, which has a negativadtmgmn maintainability and execution
performance.

1/13 Volume X (2010)

mailto:asztalos@aut.bme.hu
mailto:esyria@cs.mcgill.ca
mailto:wimmer@big.tuwien.ac.at
mailto:kessentm@iro.umontreal.ca

Transformation Rule Composition @

The goal of this paper is to reduce the manual effort of shortetransformation chains by
eliminating intermediate transformation steps. In additimany efforts are needed to define
a transformation mechanism for each intermediate step.pfémented work proposes to com-
pose a chain of transformations into one transformationdhas not involve any intermediary
meta-model. In particular, this is done by computing theditave transformation of two given
transformations.

In Section2, we first define the composition of transformations in gelneaction3 reduces
the problem to the composition of rules by (1) elaboratinghancriteria for composing graph
transformation rules and (2) presenting an automatic jpireeto compose such rules into one.
In Section4, we illustrate this approach in the context of the evolutidrihe Enterprise Java
Beans (EJB) language, transforming UML models into EJB 2ddlets and then to EJB 3.0
models. Sectio® is dedicated to the related work and we conclude in Se&ion

2 Transformation Composition

In this section, we define a composition operator to pregispécify the meaning of a transfor-
mation composition. This operation is applied in the contdxa chain of model transformations
as defined below.

Definition 1 (Transformation chain)Let T, = (T1, To,..., Ta),ey b€ an ordered sequence of
transformations where eadh defines a mapping from a meta-mod& to a different meta-

modelNt; 1. We denote such taansformation chain asiy L N LA AL HERL Mny1. Note
that we enforce that all the meta-models involved in therchigibe different from one another,
i.e., each transformation must leeogenous [MV06].

Using the previous notation, we calt; the domain off; and9;. 1 its co-domain. The trans-
formation is applied on a modet conforming to its meta-modét; and results in a new model
mi1 = Ti(m;) conforming to its meta-modéDt;, 1. Note that transformations, transformation
rules, as well as the pre- and post-condition patterns ofules are also considered as models
conforming to their respective meta-mode$S " 10].

The presented approach assumes that each transformatios é¢hain is specified using al-
gebraic graph transformation rules. The models involved@presented as graph objects in the
category of typed attributed graphs as definede&RPT0§. In the remainder of the paper, a
modelm and itselement graph G will be used interchangeably. The typed attributed gr&ph
consists of a set of nod&4§G) and edge€(G), where each node conforms to a specific node
type in a type graph (representifij, the meta-model ofn) and can hold attribute values. We
however require that graph edges be partitioned in twosgly = En(G) UA(G), distinguish-
ing trace edges A(G) from the edge&(G) conforming to those defined in the type graph. A
trace edge represents a traceability link connecting anyntwdes regardless of their type. While
a transformation is applied, traceability links are crdagach that any newly created element
must have at least a traceability Ik

1 Traceability links can be created implicitly such asJié. Otherwise, their creation must be explicitly specified
in the rules.

Proc. MPM 2010 2/13

@ ECEASST

Definition 2 (Transformation composition)Let Ty and T, be two consecutive transformations
in a transformation chain such th2it, L Ny LA Ms3. We denoteT’ = T, e T; the composed
transformation of T; with T, following the composition operaterwhich satisfies theequence,
elimination, andtransitivity criteria as defined below.

We describe the application criteria of the compositionratme given an arbitrary input model
my for Ty, mp = T1(my), andmg = T,(mp), wheremy, mp, andmg conform tot1, Mo, and M3
respectively. We denoteY = T, e T;(my) be the resulting model after the composition. In the
case where traceability links are created explicitly in thkes, m represents the graph model
isomorphic tomwithout any trace edge.

SequenceThere shall exist three injective graph morphis{say)i—(1 23 that must be defined
as:sey 1 My — N, Sedp © Mg — My — My, — T, andsegs : M — mg. Seqy ensures that the
input model is preservedeq, ensures that all the elements frés produced byT, are

present im. seqs ensures that contains no other elements than those founaidn

Elimination There should not be any morphisgrem: m, —m; — m'. That is,m’ shall not
contain any occurrence of an element fr@liz. Moreover, no traceability links involving
elements fromt, shall be present.

Transitivity We denote by\;; a traceability link (trace edge) between an element frarand
an element fronm;. The following predicate must holdA1, € A(mg) AJAzz € A(mg) =
JA13 € A(m). This ensures the transitive closure of traceability ljnles, for any instance
element o1, in mg, if it is connected through trace edges to both an instarereett of
M, and an instance element 6ft3, thenm’ must have a trace edge between the latter two
instance elements.

The sequence criterion ensures soundness and completétiessomposition operator. The
elimination criterion ensures that the resulting transfation is independent from any interme-
diate meta-model. Finally, the transitivity criterion anss that traceability links correctly map
the source and target model elements of the composed travafonT’.

The following generalizes the transformation compositiefinition to an arbitrary number of
transformations.

Definition 3 (Transformation chain compositianfsiven the chainl, = (T1, Ta, ..., Ta)hen, the
composed transformation @f, is a transformatiom’ = Ty e (Ty_1e...(Tz3e (T2 Ty))...). This
can be written in shoff’ =T e T, 1e...0eTzeTreT;.

3 Rule Composition

The task of composing two arbitrary transformations is & eemplex problem. That is because
the choice of which rule from one transformation to compo#ihk @rule from the other transfor-
mation often depends on the domain of application. For tbpesof this paper, we concentrate
on applying the composition operation on two graph tramséion rules. In this section, we
provide a procedure for composing two individual rules iatsingle one such that the sequence,
elimination, and transitivity criteria are satisfied.

3/13 Volume X (2010)

Transformation Rule Composition @

3.1 Criteria for Rule Composability

To apply the composition operator on two individual rules, assume that each of the transfor-
mations involved consists of a single rule for sake of comepless:T, = {r1} andT, = {r,}.

The procedure assumes that the rukeandr, are monotonically increasingg., they can only
create new elements and/or modify attribute values. Maea@ll traceability links created dur-
ing the application off; and T, shall be preserved. The output of the composition procedure
is a new transformatiol; = T, e Ty = {rp} e {r1} = {r3} consisting of a single rule. The fol-
lowing proposition specifies the necessary condition fer tcbmposition procedure to satisfy
Definition 2.

Proposition 1 (Composability condition)Two rulesr; =L+ K; —wRyandro, =L+ Ko — Ry
satisfy the composability condition if there exists a @dmnorphismn: L, — Ry such that:

e the domain ohis a subgraph of,, which consists of all the elements that is fronyp,

e the co-domain of is a subgraph oR; consisting of elements only froft,,

e the mapping from the domain to the co-domaimag a total injective morphism.

3.2 Composition Basis

The following two definitions summarize some formal defaris needed for the composition
procedure. These definitions are related to the algebraigposition of rules as presented
in [EEPTO6.

Definition 4 (Jointly surjective morphisms)Given three attributed typed grap@s, G,, andE,
the morphismsm, : G; — E andnm, : G, — E are called jointly surjective if for each element
ec V(E)UEn(E), there exists an elemeet € V(G1) UEn(G1) and/or an elemerg, € V (Gy) U
Em(Gz) such thatm (e;) = eand/ormp(e;) = e

Informally, Definition4 states that given two arbitrary grapBs andGy, their jointly surjec-
tive mapping is a new graph such that all elements (nodes and edge§iandG, are mapped
ontoE and all elements ik are mapped by an element in eitli&y or Go.

Definition 5 (E-based composition)Given two rule productiong; = (L1 & Ky 2 Ri) and

p2 = (L2 &L Ky % R2), an E-dependency relatidit, e;, e;) is given by a grapfe and injective
morphismse; : Ry — E, & : L, — E, which are jointly surjective. The E-concurrent produetio
p1*g P2 is a rule productiorp = (L AR R) computed based on the diagram below, where
double squares (1)(2) and (3)(4) form double pushouts anid épullback.p is also called the
composite rule or the E-based composition of p; and p;.

L <hh—Kj—"i>Ry Ly <lb— Ky —12= Ry
nLl (1) k|1) \-\ ez/ 6) k} (4) rlz
| v v , |
L<i—K, E K, —r—=R

Proc. MPM 2010 4113

@ ECEASST

Informally, Definition5 states that given two graph transformation rygegand p,, if Ri—the
right-hand side (RHS) op;—shares elements in common with—the left-hand side (LHS) of
p>—, then they can be composed into a new graph transformatieriL, K, R). This definition
however does not precise how to construct this new rule, yawigat doL, K, andR represent
concretely. Additionally, to satisfy the elimination andrisitivity criteria of Definition2, the
sub-procedure in Algorithm is required:

Algorithm 1 el i mi nat e(m)

1: for all A12,A23 € A(m) do
if trg(A12) = src(Az3) then

N

: forall A12 € A(m) do

A(m) < A(m) — {12}

10: V(m) < V(m)—{trg(A12)}
11: end for

3 createdz such thasrc(A13) = src(A12) andtrg(A1z) = trg(Azs)
4: A(m) <= A(m) U{A13} — {A12, A2s}

50 V(m)«V(m)—{trg(A1r)}

6: endif

7: end for

8

9:

Given a mode, the elimination procedure performs two runs over the tedges irm. In
the first run (lines 1 to 7), it first looks for a trace edde linking an element conforming to
M1, sayey, to an element conforming t91,, saye, and another trace edges linking e, to
an element conforming tis, sayes. It then creates the transitive trace edge, removes the
two other traceability edges as wellgs In the second run, the elimination procedure looks for
all remaining trace links involvingJt; andt, elements and removes them fram Note that
there cannot be any trace edge in the foxga remaining after the first run, since any element
from 91, must be linked to an element frof; by construction. Therefore after the elimination
procedure terminates, the only remaining trace edgeslink elements front)i; to elements
from Mis.

3.3 Composition Procedure

Letr; =L; + Ky = Ry andrp, = Ly + Ky — Ry be two rules that satisfy theomposability
condition of Propositionl. We want to produce the composite regesuch thaf{rs} = {ro} e {r1}
as defined in Sectio®.

Algorithm 2 produces the set of all possible compositiong0&ndr,. ry is extended with
a negative application condition (NAC) corresponding $oRHS. This ensures that is only
applied once on every match foundin It is worth noting that there can be differéRi’s even if
r;, is applied exhaustively oB, if the order of application affects the result. The lemmel®Ww
validate the composition procedure. Lemfnansures that the procedure will output all possible
composed ruless and Lemma ensures its correctness.

Lemma 1. If ry andr, satisfy thecomposability condition, thenconpose(ry,ry) outputs all
compositions of1 andr, such that the exhaustive applicationcafrpose(ry,r») is equivalent
to the composition of; andr, using the composition operator of Definiti@n

5/13 Volume X (2010)

Transformation Rule Composition @

Algorithm 2 conpose(ry,r)
1: compute the E-based compositidi (K3, R3) of r1 andr, such thaE = Ry

Kz + Ry
Lz« el in nate(Ly)
R+ ¢
r\, < rp extended wittR, as a NAC, if not present
repeat

Rs < applyr’ exhaustively ork

el i mi nat e(Ra)

R+ RU {(Lg7 Kz, Rs)}
: until all application sequences of have been exhausted &n
: return R

© N>R N

=
[ES)

Proof. Assume that there is a possible E-based compositieri. + K — R such that the E-
graphE # R;. This implies thaBe € E : e¢ R; wheree can be any type of element in the graph.
E is produced by jointly surjective morphisms frdRa andL,; thuse € L,. Moreover,eis an
element conforming to, as it is the domain of,. Howevere ¢ Ry, which implies thae € L,
according to the definition of the E-concurrent productiBuot L cannot contain elements from
M, because if it did, the input model would contain elementsaoming to 9t,, which is a

contradiction.
O

Lemma 2. The result of the composition procedung} = {r>} e {r1} satisfies Definitior?.

Proof. Assume that a modet, is processed by the transformatiohsandT, through a possible
traditional E-based compositiaf of the rulesr; andr,. Letrg be a rule computed by applying
the elimination procedure on the LHS, RHS, and interfacglymaf r;. Let Tz = {rs}, my =
Ti(my), mg = To(mp), andm’ = T3(m;). We shall now prove thals satisfies the sequence,
elimination, and transitivity criteria.

e Sequence Criterion: Jseq; : my — v, becausé 3z = K3 and hence the input modet; is
not modified.3seq : M — M, — My — M as no elements from} have been deleted during
the elimination that was performed to produge Moreover,3seqs : m — Mg sinceRs
contains elements conforming 3 because of the exhaustive applicatiorr’of

e Elimination Criterion: m' does not contain any element frdi, since applying the elim-
ination procedure omnj ensures that all elements from the intermediate meta-nmareel
removed from it.

e TheTransitivity Criterion is also satisfied because the elimination procedure geseait

the traceability links required by the condition.
O

When NACs come into play im or rp, we distinguish the following case:
e If there is a NAC inry and it corresponds tB;, then we extend each composite rue
with a NAC corresponding t&s.
e Ifthere is a NAC inr, and it corresponds t8;, then it is taken into account when applying
r,to E.
e Any other NAC is not considered in the presented procedure.

Proc. MPM 2010 6/13

ﬁ ECEASST

4 Application

We now apply the composition approach presented in Seétionthe following scenario. A
company has developed a transformatfl@rfior transforming UML class diagrams to Enterprise
Java Beans (EJB) 2.0. However, after some time, the compeariget to use EJB 3.0 due to
several simplifications of the new version of the standafuisT they developed a transformation
T, for migrating existing EJB 2.0 models to EJB 3.0 models. H@mveto support the generation
of new EJB 3.0 models from UML class diagrams, they would havimplement a dedicated
transformationTs, if applying the transformation chaifTy, T») is undesired. Reasons for this
may be related to performance issues for ensuring rapidrggéoe of EJB 3.0 models. Also,
direct traceability between UML models and EJB 3.0 modetiesired since EJB 2.0 instances
would become obsolete.

4.1 Involved Artefacts

UML metamode! EJ8 3 metamode!
— iS5 B EsBArchive [*
H Package | |
T name : EString —_—
g.+| beans P interfaces
171 package ? = o,
= | B Bean implements E Interfaces
| T, = pame:ESming [-] = name:EString
0.7 dasses 0.1
H class
T name : EString 1 annotation | B Annotation |
= isPersistent : EBoolean H Entity [H Session |
[| 1
|
H stateful | [[stateless |
Il
][]
E ElBArchive2
| 1
o+ | beans ————————1 1 | descriptor

| Heean | E DeploymentDescriptof
= name : Estring | 1

0.+ |interfaces

bean)
B mnterfaces | poternterface
= name : EString
———— 11 0.* | entries

E Entit —

B ety | St
| |
]

entry 1

EJB 2 metomode!

E SessionEntry | E entityEntry |
| = isstateful : EString | | 1

Figure 1: Meta-models of the case study.

A simplified version of the meta-models and transformatiales for this scenario are il-
lustrated in Figured and 2 respectively. T; transformsPackages into EJBAr chi ves and
Cl asses into eitherSessi onBeans orEnt i t yBeans, depending on thesPer si st ent
attribute, as well as intbnt er f aces. Furthermore for eacBean, anEnt r y in theDepl oy-
ment Descri pt or hasto be generated. TBepl oynment Descr i pt or concept is no longer
used in EJB 3.0, because no additional XML configuration fde8eans are required. Instead,

7113 Volume X (2010)

Transformation Rule Composition @

a light-weight approach for configuri@eans directly in the Java code throudimnot at i ons
is supported by EJB 3.0. Note that given the semantics ofntiigsation, all rules of the trans-
formations are applied exhaustively.

The transformation3; and T, have been implemented ATL [JKO6 and subsequently trans-
formed into graph transformation rules based=otF Tiger [BETO0S. To adhere to the behaviour
of ATL, the resulting graph transformation rules have the follmaproperties which also comply
to the criteria for rule composition:

e Matchable Elements. ATL is designed as a model-to-model transformation languagame
ing that the target model is completely rebuilt from the seumodel. Thus, the only ele-
ments that can be matched by a rule are elements of the soode and elements of the
target model already created by previous rule applicatidin latter are only accessible
via trace edges.

e Creation and Deletion of Elements. In ATL the source model is considered as read-only,
thus elements of this model may not be altered. Furtherneteeents of the target model
are created by executing the transformation, but onceeaxtetitey can no longer be deleted
by the transformation.

e Trace Model: For each rule execution, a trace element is generatechtinkil matched
source elements to all generated target elements. Otmafdranation rules can build on
this trace informatione.g., for adding links to already created target elements.

e Unique Matching: Each transformation rule can only match once for a giverosete-
ments. Thus, to ensure this behaviour in the graph transfitom rules, each rule com-
prises a NAC corresponding to the RHS of the fule

4.2 Composing the Transformations

We now apply the composition procedure of to our example bypusing the rules of; with
those ofT,. Since the composition procedure is applied on individukds, we have implemented
a program in Java that first detects which combinations @fsriiomT; can be composed with
rules fromT,, based on Propositioh The iteration over the rules @} follows the order shown
in the upper left of Figur. However, this may lead to several possible valid combamatiof
rules. The user then selects the most appropriate comininaticording to his knowledge of
UML class diagrams and EJB. Then, the composition proceduagplied on these two rules.
The resultj.e, the transformatioris, is shown at the bottom of Figugs

ComposingT,:R;. To:Ryis composable withy : Ry, Ty : Ry, and withT; : Rz according to the
composability condition. However, due to the fact thatR, andT; : Rz both contain a subgraph
of the LHS of T, : Ry in both their LHS and RHST; : Ry seems to be more appropriate for
composition. The reason is thht: R; actually generates the input elementsTiorR; in contrast

to the other two rules which only check for the existence esthelements. The composite rule
Tz : Ry is constructed by composing : R; andT, : Ry as follows. The LHS ofl3 : R; remains
the same as the one oy : R;. Then to create the RHS d% : Ry, the composition procedure
connects afJBAr chi ve3 element to thé?Package element ofT; : Ry via a trace edge. Then

2 Please note that due to space limitations, the NACs are oatrsin Figure2.

Proc. MPM 2010 8/13

ﬁ ECEASST

T1: UML 2 EIB2 T2: EIB2 2EIB3
b2.EJBArchive2
! c1.EJBArchive2 » ---{d2 EJBArchive3
R1| T Package aipackage $-{T p—i R1 c1:EJBArchive2 c1.EJBArchive2 rchive:
b3:DeployDesc
[i2.EJBArchive T p--{d2EJBArchive3
f
4o ¥ {
b2 EJBArchive2 5'"'! I c1:EJBArchive2 CEmivE
{b3DeployDesc jpsntitybean
| |name = c4.name

T poeee L.
f T ! c4EntityBean $-{ T p+

{
R2|.| [G1EJBArchivez
R2 " 4bZ.EntityEntry | L
Deployl i :
b3:DeployDesc ! o4 EntityBean d7. InleArface
i
a4.Class }-,J bS5:EntityBean
i
1 Binterface
name = a4.name
H
+-§ b2EJBArchivez R3|.. i q
- -4 c3:SessionBean i
b2:EJBArchive2 H H Eo 4 d7:Interface
H "1 b3Deplovhese c5:SessionEntr H
-T ______ Ao go.SessionEntry H
{ : {7 SessionEnts i
i : o -
R3 b3 DeplovDese i
i B2 EJBArchived
i-fb5:SessionBean |

c1:EJBArchive2

i [name = ad.name
H
H

d6:SessionBean
; I

¢ dZ:interface
i

‘¢ ds:Stateful

c1:EJBArchive2

[ca.SessionBeant-
h
H

c5:SessionEntry¢-+

bb:Interface

R4|-

c5:SessionEntry

isStateful = true

a

g2E/BArchive, : 42.EJBArchive3
| it .SessionBean
c1:EJBArchive2 c1.EJBArchive2] [g6:SessionBean|
i
i
> :

T3: UML 2 EIB3

R1|. a1:Package > atPackage §--{_T p--{d2EJBArchive3
(T »-—fa2EJBArchive3]
d2.EJBArchive3 :
!
R2|- a4.Class +; d6:EntityBean
]
{
]
4 d7.Interface

d2:EJBArchive3
i

R3|.-

H

!
_i-¢d6:SessionBean

|

H

H
-¢ d7.Interface

isPersistent = false

Figure 2: Transformations of the case study.

the elimination procedure removes both E(EBAr chi ve2 andDepl oyDesc elements from
the result. Finally a trace edge connecting BPackage element to theEJBAr chi ve3 is
created.Ts : Ry also comprises a NAC corresponding to its RHS sificeR; did have a NAC
corresponding to its own RHS.

Composing T, : Ry. T, : Ry is only composable witfl; : R, as it is the only rule off; that
has a RHS matchable by the LHS ©f : R,. The two rules are thus composed in the same
way as described in the previous case. In addition, we now tmeompose not only the graph
patterns but also the attribute value computations. Famele, consider the assignmemane

= c4. name in elementd6: Ent i t yBean of the RHS ofT, : Ry. It cannot be copied as is
since the assignment refers to an element of the EJB 2.0 medai. In this example, we

9/13 Volume X (2010)

Transformation Rule Composition @

only have simple value assignments without using more cexnfainctions. For setting the
attribute values in the composed transformation rule, we bafind out for each attribute value
assignment i, how the value is actually computed Ta. In our example, we can easily find
out that the name attribute of the elemedtin T, : R, is actually calculated by using theane
attribute value of the elememi4. Thus, only this assignment has to be used in the composed
transformation rule. Finally, the elimination proceduppled on the LHS offz : R, not only
deletes thédepl oyDesc element from the RHS ofz : R, (as in the previous case), but also
from the LHS ofT3: R».

Composing T, : Rs. T» : R is only composable withl; : Rs. In this case, in addition to
composing the nodes and edges of the pattern, we also cois@attribute value condition

i sStateful = fal seofthe LHS ofT, : Rs. However, the rest of the composition is analo-
gous to the previous case.

ComposingT,: Rs. T : Rqis not composable with any rule @f.

4.3 Implementation

The presented composition procedure allows to compgsnd T, nearly automatically. The
transformationls can be entirely produced with the help of some heuristicaitihér filter out
meaningful composition possibilitie®.¢., reasoning about if a rule generates the elements or
uses them only as context, as discussed in the first conggsitFurthermore, some specific
extensions such as attribute value assignments as welhag@iots are necessary in the future
to allow for a higher automation degree.

We have implemented the composition procedure on topMff Tiger. The user chooses
two transformations to compose. If they are composableptbeedure outputs the composite
rule. In the case where there are more than one possibligyuser can interactively select
the most appropriate composition. The implementatioresetin a higher-order transformation
implemented in Java. The first step is the generation of tat@plout of the LHS of the rules
from T,. These templates are then matched against the RHS of thefrafe T;. This match
model is the basis for further composition computationsa second step, the rules of are
rewritten according to the presented composition proedur addition, we have implemented
the mentioned heuristic for filtering the composition pbiies and support simple attribute
value assignments.

5 Related Work

Two threads of related work are considered. First, we dsbwasv transformation composition
has been investigated in model-driven engineering. Sessadummarize more widely related
work concerning model management in the field of data engimge

Proc. MPM 2010 10/13

@ ECEASST

5.1 Composition of Model Transformations

In the latest years, the sequential composition of modekfoamations has been an active re-
search field. Several approaches for modelling transfaéomahains DId05, VBH 06, FABJ09
RRL"09] have been proposed. Most of them are based on UML Activiggiams which or-
chestrate several complex transformations to achievegarlagoal. However, none of these
approaches tries to compute new transformations out dfiegigansformations as done in this
paper.

In [PGPBO0$, the authors present an approach for composing rulesrwithe transforma-
tion: the so callednternal composition. For example, considering a transformation from UML
class diagrams to Java, two rules can be composed when tkeyraonsform UML classes to
Java classes with different mapping details. \Wap0g, Wagelaar presents sophisticated inter-
nal composition techniques f@fL andQVT [Obj0g| in order to improve the design of model
transformations. Since these approaches focus on intesngbosition only, they do not discuss
the computation of the transitive transformation from tviseg transformations.

In [BHEQY, the compositionality of model transformations is addess By compositionality
the authors do not measequential composition as meant in this paper, but they are interested
in the spatial composition when mapping a model to its semantic domain. Compositignisli
guaranteed by a transformatidnif the execution ofT produces a set of semantic expressions
(instances of the semantic domain) such that their compnsiepresents the semantics of the
whole model.

In summary, to our best knowledge no comparable approachur® exists in the field of
model-driven engineering for composing two transformeimto the transitive transformation
as presented in this paper.

5.2 Model Management

In the area of data engineering, model managemktd7/] has gained much interested dur-
ing the last decade. Model management stands for the ideaatihd with evolution in data
engineering by using modelsd, schemas and mappings between them) and operators for pro-
ducing new models out of existing ones. They define schematgpe, such adiff andmerge,

as well as mapping operators, suchidg&rse andcompose. The goal of thecompose operator
is similar to our model transformation composition appftoaklowever, its realization is quite
different (cf. BGMNOS] and [YPO05). First, in data engineering, only relational and hiehécal
schemas are considered in contrast to object-oriented-medels, which are the basis for the
composition approach of this paper. Second, in data engngg@re-defined relational operators
(e.., project, select, andjoin) are used for describing mappings between schemas. Irnasontr
our approach is built on graph transformations, which isgaicantly different paradigm for
describing mappings between object-oriented meta-models

6 Conclusion

In this paper, we provide a mechanism for composing indafidules from a transformation
chain. This composition allows for the creation of a new ¢farmation involving only the

11/13 Volume X (2010)

Transformation Rule Composition @

initial and target meta-models. Although some assumptioust be made on the syntax of rules,
the composition procedure is general enough in the sensé thandependent from the input
model. The presented approach is based on the syntacticosdiop of the rules. Extending the
procedure to the transformation level requires to take @&tmunt the semantics of the chain of
transformations.

As this is a first attempt on composing chains of transforomati a number of open issues
still remain. In the presented example, we have only consi¢éhe core part oATL which
is comparable to the core of other model-to-model transétion approaches, such a&/T-
Relations [Obj0g. In particular, we did not focus on transformations rempgjran explicit rule
scheduler €g., with a control flow). Also, several other featuresAdfL should be supported,
such as OCL queries ardlled rules (rules that are not automatically executed by the transfor-
mation engine but that have to be explicitly invoked in thengformation). Furthermore, our
example only considers simple attribute value assignmientse rules. However, before con-
sidering more complex attribute manipulations in the cositimn, one should first think of how
to map them to graph transformations in order to provide artiteeal basis for an extending
the composition procedure. Moreover, dealing with arbit@CL expressions when composing
transformations is challenging and should certainly fortomposition topic on its own. We also
plan to evaluate the applicability of our approach with mmweplex formalisms and compare it
with other existing approaches.

Acknowledgements

We would like to thank all the participants of the 2010 Congptiided Multi-Paradigm Mod-
elling workshop (CAMPaM) for their useful feedback.

Bibliography

[BETO8] E. Biermann, C. Ermel, G. Taentzer. Precise Seroami EMF Model Transfor-
mations by Graph Transformation. International Conference on Model Driven
Engineering Languages and Systems. LNCS 5301, pp. 53—-67. Springer, 2008.

[BGMNOS8] P. A. Bernstein, T. J. Green, S. Melnik, A. Nash. lempenting mapping composi-
tion. VLDB J. 17(2):333-353, 2008.

[BHEO09] D. Bisztray, R. Heckel, H. Ehrig. CompositionalityModel TransformationsElec-
tronic Notes in Theoretical Computer Science 236:5-19, 2009.

[BMO7] P. A. Bernstein, S. Melnik. Model management 2.0: ipafating richer mappings.
In International Conference on Management of Data. Pp. 1-12. ACM, 2007.

[EEPTO06] H. Ehrig, K. Ehrig, U. Prange, G. TaentzBundamentals of Algebraic Graph
Transformation. EATCS. Springer-Verlag, 2006.

[FABJO9] M. D. D. Fabro, P. Albert, J. Bézivin, F. Jouault. Aeving Rule Interoperability
Using Chains of Model Transformations. International Conference on Theory
and Practice of Model Transformations. LNCS 5563, pp. 249-259. Springer, 2009.

Proc. MPM 2010 12 /13

E

ECEASST

[JKO6]

[KMS+10]

[MVO08]

[Objo8]

[O1dO5]

[PGPBOS]

[RRL*09]

[VBH *+06]

[Wag08]

[YPO5]

F. Jouault, I. Kurtev. Transforming Models with ATln Model Transformation in
Practice Workshop. LNCS 3844, pp. 128-138. Springer, 2006.

T. Klihne, G. Mezei, E. Syriani, H. Vangheluwe, M. Wimniexplicit Transforma-
tion Modeling. In Ghosh (ed.)MoDELS 2009 Workshops. LNCS 6002, pp. 240—
255. Springer, 2010.

T. Mens, P. Van Gorp. A Taxonomy of Model Transfornmati In GraMoT’ 05.
ENTCS 152, pp. 125-142. Tallinn (Estonia), March 2006.

Object Management Group. Meta Object Facility 20e@y/View/Transformation
Specification. April 2008.

J. Oldevik. Transformation Composition Modellifgamework. Inlnternational
Conference on Distributed Applications and Interoperable Systems. LNCS 3543,
pp. 108-114. Springer, 2005.

C. Pons, R. Giandini, G. Perez, G. Baum. An Algebfgiproach for Composing
Model Transformations in QVT. linternational Workshop on Software Language
Engineering. 2008.

J. E. Rivera, D. Ruiz-Gonzalez, F. Lopez-Romero, J. BtytA. Vallecillo. Or-
chestrating ATL Model Transformations. MtATL Workshop. Pp. 34—46. 2009.

B. Vanhooff, S. V. Baelen, A. Hovsepyan, W. Joosen, Yl&es. Towards a Trans-
formation Chain Modeling Language. Imternational Workshop on Embedded
Computer Systems. LNCS 4017, pp. 39-48. Springer, 2006.

D. Wagelaar. Composition Techniques for Rule-Bagedel Transformation Lan-
guages. Innternational Conference on Theory and Practice of Model Transforma-
tions. LNCS 5063, pp. 152-167. Springer, 2008.

C. Yu, L. Popa. Semantic Adaptation of Schema Mappingen Schemas Evolve.
In International Conference on Very Large Data Bases. Pp. 1006-1017. ACM,
2005.

13/13

Volume X (2010)

	Introduction
	Transformation Composition
	Rule Composition
	Criteria for Rule Composability
	Composition Basis
	Composition Procedure

	Application
	Involved Artefacts
	Composing the Transformations
	Implementation

	Related Work
	Composition of Model Transformations
	Model Management

	Conclusion

