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1 Abstract

Speech is a defining human trait, yet much of our mental framework for producing and
processing spoken language remains a mystery. Computational models can help elucidate
some these internal structures while allowing us to engineer improved speech technology. We
present a variational Bayesian inference model for the fully unsupervised discovery of phones,
sub-word units, and words directly from an acoustic input. Extending the state-of-the-art
model for unsupervised lexicon discovery introduced by Lee et al. (2015), which relied on
sampling, our framework permits parallelization and distribution to multiple cores, promis-
ing speed improvements and scalability. We give an introduction to variational Bayesian
methodology and use it to re-frame the original model. We highlight some results from Lee
et al. (2015) which underscore the capabilities of the model, and discuss improvements made
to similar models through the application of variational Bayesian methods. With these ad-
vances in mind, we consider future experiments made feasible by our variational system and
suggest a range potential uses for completely unsupervised language-independent models
such as ours.

2 Introduction

2.1 Background

Spoken language allows humans to communicate effectively with each other, making it a fun-
damental characteristic of our species. Studying the computational underpinnings of speech
production and perception affords us a more extensive understanding of the phenomenon
(and of language as a whole) while helping us to develop improved computer-human inter-
actions. Many current state-of-the-art spoken language systems focus on supervised learn-
ing—that is, training a system on copious amounts of labeled data. Producing such data is
costly and time-consuming, meaning that sufficient quantities exist only for a small fraction
of the world’s languages, and even then, the quality is often inadequate. This contributes to
the underrepresentation of many world languages and language families, particularly those
spoken in the developing world. In addition, a supervised approach does not offer an entirely
accurate model of human language capabilities. Language acquisition is unsupervised in the
machine-learning sense; we infer linguistic structure and rules implicitly from unlabeled
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data. These factors motivate an unsupervised approach which incorporates existing theories
about language and cognition in order to eliminate the need for labeled training data. The
practically unbounded amount of unlabeled speech data which exists in the form of videos,
audiobooks, and archival recordings (to name a few sources) particularly incentivizes unsu-
pervised algorithms for speech processing, especially ones that can interface directly with an
acoustic signal.

2.2 The model

The specific language phenomenon we model is lexicon discovery, for which we implement an
unsupervised learning algorithm. Extending the state-of-the-art framework introduced by
Lee et al. (2015), our model constructs a complete hierarchy of linguistic units (phonemes,
morphemes, and words) directly from an acoustic input. The unsupervised lexicon discovery
model (ULD) presented by Lee et al. (2015) was the first to jointly model the induction of
a full stack of hierarchical components, combining and building on earlier work in phoneme
discovery (Lee and Glass, 2012) and in unsupervised syntactic and morphemic structure
inference (Johnson et al., 2007; O’Donnell, 2015) . ULD is composed of three main com-
ponents: a Dirichlet process hidden Markov model (DPHMM) for segmenting continuous
audio input and hypothesizing a sequence of reusable phone-like units (PLUs), an adaptor
grammar which recognizes and stores frequently reused syntactic structures based on an un-
derlying grammar—in this case, grouping PLUs into morphemes and words—and finally a
noisy channel model, which allows substitutions, insertions, and deletions to occur between
the inputs and outputs of the DPHMM and adaptor grammar components, approximating a
phonological system. The noisy channel is crucial to the joint learning nature of the model in
that it allows the DPHMM and adaptor grammar to constrain one another. This type of joint
learning framework, whereby multiple linguistic phenomena are modeled simultaneously, has
been shown to improve accuracy (Johnson, 2008).

ULD uses nonparametric Bayesian inference to implement a fully unsupervised learning
model. In Bayesian modeling, we posit unobserved (latent) variables which are conditionally
dependent on the observed data. Defining the model in this way allows for the dynamic
updating of the latent variables (the hypothesis) according to the data (the evidence) while
incorporating prior theoretical assumptions about the problem, yielding a powerful method
for unsupervised learning.

A Bayesian model is defined as follows: let Z be the set of latent variables, let X be the
set of observed data, and let Φ be a set of static model hyperparameters specified by the
user. Then by Bayes’ rule we have:

P (Z|X,Φ) =
P (X|Z,Φ)P (Z,Φ)∑

z∈Z
P (X|Z,Φ)P (Z,Φ)

The numerator is often called the generative model, and gives a joint distribution on data
and latent variables. In general, we define Bayesian models in terms of a generative model,
where draws from the latent random variables are used to generate data. It consists of the
conditional probability of the data given the latent variables defining the model (referred
to as the likelihood), multiplied by the prior probability of the latent variables (known as
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the prior). This gives us an unnormalized measure of the likelihood of generating the data
from the model. However, in order to obtain a proper probability we need to divide by a
normalizing constant—the probability of the data. We obtain this probability by integrating
(or summing, in the discrete case) over all possible ways of obtaining the data—that is, all
the latent variables. It is easy to see why, given a sufficiently complex model and a large
amount of data, evaluating this integral becomes computationally intractable.

In absence of a method to compute the marginal probability of the data directly, there
are two common approaches to doing Bayesian inference. The first, used in the original
ULD model, is sampling, which capitalizes on the fact that given a generative model, we can
approximate the posterior (the left-hand side of Bayes’ rule) by randomly sampling from the
generative model, eliminating the need to calculate the marginal likelihood. This technique
has played a major role in Bayesian inference, but is difficult to parallelize. This makes it
nearly impossible to scale such algorithms to the types of large speech datasets available
(Blei et al., 2017). Variational Bayesian inference presents an often faster alternative for
approximating the posterior distribution.

2.3 Variational Bayesian inference

Variational Bayesian inference re-casts the challenge of computing the posterior distribution
on latent variables as an optimization problem. By iteratively maximizing a lower bound
on the (incomputable) marginal likelihood, framed as a variational distribution over latent
variables, the algorithm yields an approximation of the posterior. This intuition is clarified
by (3). This strategy lends itself well to parallelization across multiple cores and interfacing
with tools such as the MapReduce framework for cluster computation (Zhai et al., 2012).
In order obtain the approximation of the posterior, we introduce a family of variational
distributions qν(Z) which have the same support as the posterior (p(Z|X,Φ)) indexed by
variational parameter ν, used to adjust the distribution q.

2.3.1 Computing the ELBO

Our goal is to find the qν(Z) which minimizes the Kullback-Liebler (KL) divergence between
qν(Z) and p(Z|X,Φ), or DKL(qν(Z) || p(Z|X,Φ)), where KL-divergence is a measure of the
difference between to probability distributions. KL-divergence is given by

DKL(qν(Z) || p(Z | X,Φ)) = Eq[log
qν(Z)

p(Z | X,Φ)
]

= Eq[log qν(Z)]− Eq[log p(Z,X | Φ)] + log p(X | Φ) (1)

where Eq indicates taking the expected value with respect to q (see Appendix A for further
explanation of this notation). Unfortunately, the third value, log p(X | Φ), is the marginal
likelihood, requiring the intractable computation we seek to avoid, so we cannot directly
compute KL divergence. However, this equation does generate a valuable result: a lower
bound on the marginal called the evidence lower bound (ELBO). To obtain this result, first
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note that because of what KL divergence represents, it can never be negative. This gives us:

0 ≤ Eq[log q(Z)]− Eq[log p(Z,X | Φ)] + log p(X | Φ)

− log p(X | Φ) ≤ Eq[log q(Z)]− Eq[log p(Z,X | Φ)]

log p(X | Φ) ≥ Eq[log p(Z,X | Φ)]− Eq[log q(Z)] (2)

Thus

ELBO(q) = Eq[log p(Z,X | Φ)]− Eq[log q(Z)]

= Eq[log p(Z,X | Φ)] +H(q)

where H(q) is the entropy of the distribution q. This derivation yields an important fact:

log p(X | Φ)−DKL(q(Z) || p(Z | X | Φ)) = ELBO(q) (3)

(3) provides the explanation to the previous intuition that maximizing the ELBO allows
us to minimize the KL divergence—the maximal ELBO is log p(X). When ELBO(q) =
log p(X | Φ) the KL-divergence must be 0 (Blei et al., 2017). For an expanded derivation,
as well as an equivalent derivation using Jensen’s inequality, see Appendix A.

2.3.2 Mean-field approximation

One of the fundamental reasons why we cannot compute the posterior directly is the presence
of conditional dependencies between latent variables in it—variables that are independent in
the generative process may become conditionally dependent in the posterior. Since the vari-
ational distribution need only be an approximation, we make a mean-field assumption—that
is, we assume that the variational distribution qν(Z) has none of these conditional depen-
dencies, or

qν(Z) =
∏
zi∈Z

qνi(zi)

This is a powerful assumption allowing us to optimize each variational distribution itera-
tively. While holding all other variational distributions constant, we can find the variational
parameters for qνi(zi) that maximize the marginal likelihood. By the chain rule, we derive
the following lower bound for each variational distribution as:

Li(qνi(zi)) = Eq[log p(zi|Z−i, X,Φ)]− Eq[log qνi(zi)] (4)

where Z−i indicates the set of all latent variables in Z which are not zi.

2.3.3 Updates

Recall that the goal is to maximize the lower bound on the variational distribution over
each latent variable Li, which is accomplished by adjusting each νi. The value for νi that
locally maximizes the function Li is found by setting the first derivative with respect to νi
equal to 0 and solving for νi. Taking the derivative of the objective function is costly; this
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cost is compounded by the need to recompute the derivative at every parameter update,
and for every variational distribution parameter. Using exponential family random variables
allows us to take advantage of some convenient mathematical facts and avoid this costly
computation entirely. When each qνi(zi) and each distribution in the generative model are
in the exponential family, we obtain the following closed-form update for each νi:

νi = Eq[gi(Z−i, X,Φ)] = Eq

[
φ1 +

∑
zn∈Z−i

t(xn, zn)

φ2 +N

]
(5)

where gi(Z−i, X,Φ) is a function which gives the natural parameters of the exponential
family distribution in the posterior, φ1 and φ2 are the parameters for the exponential family
distribution in the prior, N is the total number of datapoints, and t(xn, zn) is the sufficient
statistic of the prior distribution—in many cases, this is simply a count of occurrences of zn.
For a more in-depth explanation of this result, see Appendix B.

2.3.4 Coordinate ascent

We now have a way of optimizing each variational distribution by setting the parameters
to the expected value of the natural parameters in the posterior, conditioned on the other
latent variables and the data. If the objective function could be formulated as a strictly
convex function, then a single update of the variational parameters would be sufficient to
find a solution, since a local optimum in a convex function is a global one. However, given
the composite nature of most Bayesian models, this is seldom the case, and we use a non-
convex optimization algorithm to iteratively find local maxima, with the ultimate goal of
converging on the global maximum. The Coordinate Ascent Variational Inference (CAVI)
provides an interface for optimizing the ELBO. It is worth noting that the CAVI algorithm
is a generalization of the well-known Expectation-Maximization algorithm (Dempster et al.,
1977); where the latter gives a point estimate of the posterior, the former returns an ap-
proximation of the full distribution—a more data-rich representation. In CAVI, we alternate
between computing the objective function (analogous to the expectation step) and updating
the variational parameters (analogous to the maximization step) (Neal and Hinton, 1998).

Algorithm 1: The CAVI algorithm

initialize each νi
while not ELBO converged do

for each variational parameter νi do
νi = Eq[gi(Z−i, X,Φ)]

re-compute ELBO L(q) = Eq[log p(Z,X)] +H(q)

The initialization step for each νi can be random, but this is not required. Often, we
let qνi(zi) be a distribution of the same type as in the generative model, and initialize
it with uniform or random parameters. However, we may choose the initial parameters
more deliberately and encode some bias in the variational distribution, with the caveat (and
occasionally the benefit) that varying initializations can lead to convergence on different
local optima (Blei et al., 2017)
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3 The Generative Model

The ULD generative model can be broken up into roughly three parts: the adaptor grammar,
the noisy channel, and the Dirichlet process hidden Markov model (DPHMM). From a
top-down perspective, the adaptor grammar parses a sequence of top-level phone-like units
(PLUs) into morphemes and words, building a syntactic tree. The noisy channel, using
a set of edit operations (insertion, deletion, and substitution) maps the yield of this tree
(top-level PLUs) to bottom-level PLUs, modeling some of the phonological processes which
occur during speech production. Finally, the DPHMM takes these bottom-level PLUs and
finds an acoustic signal (represented by 39-dimensional Mel frequency cepstral coefficient
(MFCC) vectors) that could have generated them. It is necessary to point out that this
top-down view of the model does not accurately reflect the complete flow of information in
it. Due to its joint learning properties, every component affects every other—for example,
the DPHMM first infers the PLU inventory which the adaptor grammar needs to generate
trees, and makes adjustments to PLU boundaries which can affect the adaptor grammar’s
parses. This complex generative model contains a multitude of inference steps, making it an
ideal candidate for the application of variational Bayesian methods. The following sections
offer more detailed descriptions of each model and their respective latent variables.

3.1 Adaptor grammars

First developed by Johnson et al. (2007), adaptor grammars take as input some context-free
grammar and a set of strings which can be parsed by that grammar. Using a non-parametric
distribution, they adjust the probability of different rule expansions in the context free
grammar, thereby storing derivational trees while biasing the reuse of frequently occurring
ones; these stored fragments reveal patterns in the linguistic structure of the data. By
increasing the likelihood of reusing a tree according to its frequency, adaptor grammars
instantiate a “rich get richer” dynamic where common trees become more likely than rare
ones. In ULD, we use adaptor grammars to group discovered PLUs into morphemes and
words. Before formally defining adaptor grammars, we need to define context free grammars,
probabilistic context free grammars, and the Pitman-Yor Process.

3.1.1 Context-free Grammars and probabilistic context-free grammars

A context-free grammar (CFG) is a tuple (N,E,R, S) where N is a set of nonterminals
symbols, E is a set of terminal symbols disjoint from N , and R is a set of rules of the form
A → β where A ∈ N and β ∈ (N ∪ E)∗ (i.e. any concatenation of symbols in N and E).
We constrain the CFGs to be in Chomsky normal form, meaning every rule is either of form
A → a where a ∈ E or A → BC where B ∈ N and C ∈ N . Note that any CFG without
epsilon productions (rules that go to the empty string) can be rewritten in Chomsky normal
form. (Hopcroft et al., 2006)

Similar to a CFG, a probabilistic context-free grammar (PCFG) is a tuple (N,E,R, S, θ)
where N,E,R, S are the same as in a CFG, and θ is a set of probability vectors such that∑
A→β∈RA

θA→β = 1, where RA is the set of rules which have nonterminal A on the left-hand

side.
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3.1.2 Pitman-Yor Process

The Pitman-Yor process (Pitman and Yor, 1997) can be thought of as a distribution on
infinite-sided dice, or as generating a partition of integers. Perhaps more intuitively, a
Pitman-Yor process defines a distribution over distributions—each draw from a Pitman-
Yor process is itself a countably infinite distribution. There are multiple equivalent ways
of defining a Pitman-Yor process; we use the stick-breaking construction, as it provides an
iterative definition. Given a scale parameter a, a discount factor b and a base distribution
G0, a Pitman-Yor process which partitions [0, 1] into countably infinite segments is defined
by algorithm 2:

Algorithm 2: The Pitman-Yor process

for i ∈ {1, . . .} do
draw νi ∼ Beta(1− b, a+ ib)
sample atom zi ∼ G0

define πi
∆
= νi

i−1∏
j=1

(1− vj)

define G(z)
∆
=
∞∑
i=1

πiδ(zi, z) where δ(zi, z) = 1 if zi = z, 0 otherwise

(Sethuraman, 1994)
Recall that a draw from a Beta distribution is a biased coin. Intuitively, each νi is a

coin that gives the probability of stopping at that stick, and 1 − νi is the probability of
continuing to the next stick. Thus νi is the portion of the stick that we “break off” and
1 − νi is the remaining length of the stick, from which we break off νi+1 (hence the name
of this representation). πi, the probability of being at stick i, is equivalent to the product
of the probability of having passed sticks 1, ..., i− 1 and the probability of stopping at stick
i. The parameters a, b control the concentration and spread of the distribution, determining
whether most of the mass will be concentrated on a few sticks or spread out over many. G(z)
then gives the probability of a distribution z with the support as the base distribution G0.

3.1.3 Adaptor grammar definition

With these components, we can formally define an adaptor grammar as a tuple (G,M, a, b, α)
where G is a CFG, M is a set of adapted nonterminals, a and b are Pitman-Yor process
parameters, and α is a set of Dirichlet distribution parameters indexed by each nonterminal
in N . The adaptor grammar employs the Pitman-Yor process to generate a distribution over
tree fragments (called grammatons) which biases the reuse of common fragments, increasing
the probability of stopping at the stick associated with the grammaton when it appears. To
formally define an adaptor grammar, let A1, . . . , Ak be a reverse topological sorting of the
adapted nonterminals in M , such that for all Aj ∈ M the children of Aj come before Aj in
the ordering. Relying on this ordering, algorithms 3 and 4 give a formal definition of the
adaptor grammar generative process.

This definition of adaptor grammars gives us the following latent variables:

• zi: the full derivational trees that yielded the data.
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Algorithm 3: Building the grammar

# constructing the PCFG
foreach nonterminal A in N do
draw rule weights θA ∼ Dir(αA) ;
# constructing the grammatons GA

for A ∈ A1, ..., Ak do
draw πA ∼ PY P (aA, bA)
# construct tree zA,i
for i ∈ {1, . . .} do

draw rule A→ B1 . . . Bn from
RA

set zA,i =
A

B1
. . . Bn

while zA,i has nonterminals in
leaves do

choose a B from B1 . . . Bn

if B is non-adapted
nonterminal then

expand B using the
PCFG

else
expand B using GB

# guaranteed to exist
because of topological
ordering

for i ∈ {1, . . .} do
set GA(zA,i) = πAi

Algorithm 4: Generating data

# generating derivation trees zi
for i ∈ {1, . . .} do

if S is adapted nonterminal then
draw zi ∼ GS

else
draw S → B1 . . . Bn from RS

set zi =
S

B1
. . . Bn

while zi has nonterminals in leaves
do

choose a B from B1 . . . Bn

if B is non-adapted nonterminal
then

expand B using the PCFG

else
expand B using GB

set xi to the yield of tree zi

• zA,i: the stored sub-trees headed by adapted non-terminals

• ν: the set of stick-weight proportions for the Pitman-Yor process

• θ: the set of PCFG rule probabilities

Our inference problem can be formalized as finding the posterior distribution on full deriva-
tional trees zi—these depend on all the other latent variables, and reveal the inferred un-
derlying linguistic structure. However, this inference is over an extremely large set of latent
variables. In fact, in the current formalization, we cannot do inference over this set of latent
variables, since some are countably infinite. To make this problem finite, we use a truncated
stick-breaking representation, where after a sufficiently large i we let νi = 1, so that the
probability of continuing past that stick is 0. Beyond the large number of latent variables,
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we need to take into account the potentially exponential number of possible parses for each
sentence given the grammar. Indeed, averaging rule probabilities over all of these parses is
the most costly portion of the algorithm.

3.2 Dirichlet process hidden Markov model

The goal of the DPHMM is to jointly learn the phonetic boundaries of the speech input,
clusters of acoustically similar segments, and PLU identities. By using a Dirichlet process,
we do not bound the number of possible PLUs, but the reuse of existing PLUs is preferred
(as in the adaptor grammar model). In the original model, defined by Lee and Glass (2012),
a sampling approach was used. Extending this work, Ondel et al. (2016) implemented the
model using variational Bayesian techniques. To describe the model, we first need to provide
background on hidden Markov models and Gaussian mixture models.

3.2.1 Hidden Markov Models

A hidden Markov model (HMM) consists of a finite number of states combined with probabil-
ity distribution over transitioning between states, dependent on the previous state. Observa-
tions are generated by such transitions, and the probability of emitting a certain observation
is defined by a distribution which depends on the current state (Rabiner and Juang, 1986).
In the case of the DPHMM model, each PLU is modeled by its own three-state HMM, cor-
responding to the start, middle, and end of a phone. Each emission distribution is modeled
by a Gaussian mixture model.

3.2.2 Gaussian Mixture Models

A multimodal continuous distribution can be modeled by a linear combination (mixture)
of Gaussian distributions. Each Gaussian is known as a component with a mean µk and a
covariance Σk. In order to combine several Gaussians, we need mixing coefficients πk such

that
K∑
k=1

πk = 1. Using these coefficients, we choose a Gaussian distribution and then sample

a datapoint from its probability density function. The probability of datapoint x in a GMM is

p(x) =
K∑
k=1

πkN (x|µk,Σk)

(Bishop, 2006)
From this, it is clear that the greater the mixing coefficient, the more often that component
is chosen.

3.2.3 The DPHMM generative model

The DPHMM generative model first chooses a PLU label, or cluster, from the Dirichlet pro-
cess. This cluster is associated with an 3-state HMM giving the start, beginning, and end of
the phone. Sampling from the Gaussian mixture models at each state of the HMM produces
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a vector of MFCCs corresponding to the acoustic signal of the chosen PLU. Algorithm 5
gives a formal representation of this process:

Algorithm 5: Defining the DPHMM

# Defining the mixture models
choose the GMM mixture weights π ∼ Dir(ηgmm0 )
choose mean µ, and covariance matrix Σ with diagonal λ by drawing from the
Normal-Gamma distribution parametrized by normal distribution hyper-parameters
µ0 and (κ0λ)−1, and Gamma distribution hyper-parameters α0, β0.

# Defining the HMM transition matrix
choose the rows of the transition matrix ri ∼ Dir(ηhmm,i0 )
# Sampling M possible PLUs
for i ∈ {1, . . . ,M} do

sample νi ∼ Beta(1, γ)
sample cluster label θi ∼ G0, the Dirichlet process base distribution

# Sampling N datapoints
for i ∈ {1, . . . , N} do

choose an cluster label θi with probability πi(ν) = νi
i−1∏
j=1

(1− vj)

# cluster labels correspond to HMMs
sample a path S = s1, . . . , sn from the transition probability distribution
for sj ∈ S do

choose a Gaussian component from mixture model
sample datapoint from Gaussian density function

This model has three sets of latent variables:

• ci: the cluster assignment of the ith segment in the dataset

• sij: the HMM state of the jth frame for the ith segment

• mij: the GMM component of the jth frame for the ith segment

3.3 The noisy channel

The final component to the joint model, the noisy channel, allows the DPHMM and adaptor
grammar to interface by rewriting each other’s outputs. For example, if there is a mistake
in the acoustic input or in the DPHMM cluster assignment, the adaptor grammar could
fix this by substituting in a more probable PLU. The ability to make such edits is crucial
when the acoustic signal is coupled with some amount of noise. The full set of operations
the noisy channel allows is: substitution, insertion, and deletion. These are the same exact
operations as in the well-known Levenshtein distance algorithm (Levenshtein, 1966), a dy-
namic programming algorithm typically used to find the minimum edit distance between two
strings—that is, the minimum number of insertions, deletions, and substitutions required to
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rewrite one string as the other. To define a noisy channel, we leave the second string un-
specified, and use the Levenshtein framework to enumerate all possible strings that the first
string could be edited into. To maintain the plausibility of our model, we limit the number
of consecutive insertions and deletions at 2, and strongly bias making no edit at all. This
makes intuitive sense, as all communication would break down were a speaker to substitute
every phoneme he intended to produce, insert an arbitrary number of extra ones, or delete
all of them. The following prior probabilities are needed to define this model:

• operation probabilities o: this is a vector specifying the probability of doing an inser-
tion, deletion, or substitution at all. It is drawn from a Dirichlet distribution.

• probability of inserting each phone I: given an alphabet of length k, we draw a vector
from a Dirichlet distribution which specifies the probability of inserting that phone
into the produced string (assuming that insertion has already been picked)

• probability of substitution ζ: since each phone can be substituted for each other phone,
this is a k × k matrix where each row sums to 1. Thus, we draw each row from a k-
dimensional Dirichlet distribution.

These three random variables also comprise the set of latent variables in the noisy channel
model.

4 Variational Updates

Having defined the model, we need to construct variational distributions which approximate
the posterior for each latent variable. The full set of latent variables, listed with the hyper-
parameters of their prior distributions and the name of the variational parameter indexing
its variational distribution q (if applicable) is given in Table 1 . Note that the variational im-
plementation of the DPHMM follows a slightly different paradigm, so we refer the reader to
Ondel et al. (2016) for a full description of the variational parameter updates and derivations.
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Latent variable Description variational parame-
ter

hyperparameter

Adaptor grammar

zi the full derivational
trees that yielded
the data

φ

zA,i the stored sub-trees
headed by adapted
non-terminals

φA

ν the set of stick-
weight proportions
for the Pitman-Yor
process

γ1, γ2 a, b

θ the set of PCFG rule
probabilities

τ α

DPHMM

ci the cluster assign-
ment of the ith seg-
ment in the dataset

γ

sij the HMM state of
the jth frame for the
ith segment

ηhmm0 , G0

mij the GMM compo-
nent of the jth frame
for the ith segment

µ0, (κ0λ)−1, ηgmm0

Noisy channel

o the operation proba-
bilities

ξops εops

I the insertion proba-
bilities

ϕins ς ins

ζ the substitution
probabilities

σ ρ

Table 1: latent variables with their respective variational parameters and hyperparameters
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4.1 Adaptor grammar updates

The updates for the adaptor grammar are given as in Cohen et al. (2010):

γ1
A,i = 1− bA +

∑
B∈M

NB∑
k=1

f̃
(
A
∗→ sA,k, sB,k

)
γ2
A,i = aA + ibA +

i−1∑
j=1

∑
B∈M

NB∑
k=1

f̃
(
A
∗→ sA,j, sB,k

)
τA,A→β =

∑
B∈M

NB∑
k=1

f̃
(
A→ β, sB,k

)
φ
A,A

∗→sA,k
= Φ(γ1

A,i)− Φ(γ1
A,i + γ2

A,i) +
i−1∑
j=1

(
Φ(γ1

A,i)− Φ(γ1
A,i + γ2

A,i)
)

φA,A→β = Φ(τA,A→β)− Φ(
∑
β

τA,A→β)

where f̃
(
r, sB,k

)
is the expected count of rule r in the derivation trees of string sB,k which

is headed by nonterminal B and spans k units, and A
∗→ sA,k indicates that non-terminal A

expands to the string spanning i and corresponding to the yield of the grammaton headed by

A. In Cohen et al. (2010) the value f̃
(
r, sB,k

)
is computing using the inside-outside algorithm

and a preprocessing step to determine sB,k. However, in the implementation proposed in
Zhai et al. (2014), this preprocessing step is avoided by sampling an approximating PCFG.
In fact, the Zhai et al. (2014) model uses sampling to approximate both the tree fragments
zA,i and the full tree derivations zi. Counter-intuitively, this speeds up the model, despite the
sampling approach being slower in the general case. This speed increase emerges from the
fact that the expectation and maximization steps of the CAVI algorithm can be equivalently
defined in terms of local and global latent variables. Local variables, such as the stick-weight
proportions and rule weights, must be computed for each data point. Global variables, like
the set of derivation trees zi, need to take all of these variables into account. The expectation
step involves optimizing the global variables, while the maximization step optimizes the
local variables. This second optimization can be easily distributed across multiple cores.
However, the optimized local variables need to be collected again in order to recalculate
the global variables in the expectation step; this portion of the algorithm is not easily
parallelizable. Furthermore, in the original variational model, the run time was dominated
by the Inside-Outside algorithm for calculating expected values of rule counts, which has a
time-complexity of O(|N |2|xi|3 + |N |3|xi|2) where |xi| is the length of the ith input sequence
(Cohen et al., 2010). By using sampling, Zhai et al. (2014) avoid some of the cost involved
in this computation. We incorporate this faster implementation into the ULD framework.

For an example derivation of a variational update see Appendix C.
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4.2 Noisy channel updates

Let S be the set of all input strings to the noisy channel, let PLU(i) indicate the PLU with
index i, and let O(i) indicate the operation indexed by i. Let g̃(op[p], sn) be the expected
number of times an operation op (which can be insertion or substitution) is applied to PLU
parameter(s) p in the string sn. Note the overloaded call to op[p] in the case of substitution,
where it takes two parameters. The expected count g̃ can be computing using a Forward-
Backward style algorithm which sums over all entries in the expanded Levenshtein chart.
With this value, we can derive the updates for the noisy channel’s variational distributions,
using (29). They are:

ξopsi = εopsi +
∑
sn∈S

k∑
l=1

g̃
((
O(i)[PLU(l)]

)
, sn

)
φinsi = ς insi +

∑
sn∈S

g̃
(
ins
[
PLU(i)

]
, sn

)
σi,j = ρi,j +

∑
sn∈S

g̃
(
sub
[
PLU(i), PLU(j)

]
, sn

)

5 Summary of previous results

Lee et al. (2015) ran several variants of the ULD model on a set of lecture recordings from the
MIT lecture corpus. These were: a full model where the number of distinct PLU types was
inferred from the data, a truncated model where the PLU inventory size was upper-bounded
by 50, a lesioned version where the acoustic model (the DPHMM component) was removed
after discovering the initial PLU labels and boundaries, meaning that the joint model could
no longer relabel or re-segment PLUs, and finally a version were the noisy channel and
acoustic model were removed, splitting the joint model into two separate parts.

5.1 Phone segmentation results

The phone segmentation produced by the joint model was evaluated against forced align-
ments of each lecture, with a 20ms tolerance margin (i.e. anything within 20ms of the force-
aligned gold standard would be considered correct). Note that forced alignment—aligning
a transcription of an audio recording with the actual audio by determining word and phone
boundaries—is error-prone, so the gold standard against which Lee et al. (2015) evaluated
their results most likely contained misaligned segments. The F1-score values reported by
Lee et al. (2015) for phone segmentation, which can be seen in Table 2, show similar values
for both the inferred PLU inventory system (FullDP) and the limited PLU inventory sys-
tem (Full50), as well as the DPHMM system used to initialize the phone boundaries in the
FullDP system, and the hierarchical hidden Markov model (HHMM) used to initialize the
Full50 system.
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Lecture topic Full50 HHMM FullDP DPHMM

Economics 74.4 74.6 74.6 75.0
Signal processing 76.2 76.0 76.0 76.3
Clustering 76.6 76.6 77.0 76.9
Speaker adaptation 76.5 76.9 76.7 76.9
Physics 75.9 74.9 75.7 75.8
Linear algebra 75.5 73.8 75.5 75.7

Table 2: F1 scores for phone segmentation for each system and their respective initialization
systems (Lee et al., 2015)

Lecture topic Full50 -AM -NC FullDP -AM -NC

Economics 15.4 15.4 14.5 16.1 14.9 13.8
Signal processing 17.5 16.4 12.1 18.3 17.0 14.5
Clustering 16.7 18.1 15.9 18.4 16.9 15.2
Speaker adaptation 17.3 17.4 15.4 18.7 17.6 16.2
Physics 17.7 17.9 15.6 20.0 18.0 15.2
Linear algebra 17.9 17.5 15.4 20.0 17.0 15.6

Table 3: F1 scores for word segmentation by each system and its lesioned versions(Lee et al.,
2015)

5.2 Word segmentation

As Lee et al. (2015) mention, due to the lack of a gold standard alignment of the audio used
in the experiments, defining and measuring word segmentation presents its own challenges.
Table 3 shows F1 scores for the word segmentation task for both the truncated and the
full PLU inventory systems run by Lee et al. (2015). These results show that the noisy
channel was important for word segmentation—intuitively, this makes sense, as words of
the same type but with different surface realizations cannot be labeled as the same if the
noisy channel is not able to make edits accommodating the variation. The 1.6% average
improvement between the full system and the -AM lesioned version suggests that the joint
learning nature of the model has a small positive effect on word segmentation.

Lee et al. (2015) also evaluated the number of top 20 term frequency-inverse document
frequency (TFIDF) words (a commonly-used measure of word importance in a set of doc-
uments) that the various systems identified. These values are reported in comparison with
the number of terms identified by a baseline system (Park and Glass, 2008) and a state-of-
the-art system (Zhang et al., 2013), the latter of which uses a much richer representation for
audio data than the MFCCs used in ULD. As can be seen in Table 4, both ULD systems
frequently outperformed both the baseline and the state-of-the-art system, despite using a
sparser data format to represent the audio than Zhang et al. (2013).
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Lecture topic Full50 -AM -NC FullDP -AM -NC Park&Glass Zhang

Economics 12 4 2 12 9 6 11 14
Signal processing 16 16 5 20 19 14 15 19
Clustering 18 17 9 17 18 13 16 17
Speaker adaptation 14 14 8 19 17 13 13 19
Physics 20 14 12 20 18 16 17 18
Linear algebra 18 16 11 19 17 7 17 16

Table 4: Number of top 20 TFIDF words discovered by each system (Lee et al., 2015)

5.3 Qualitative results

In addition to these quantitative values, Lee et al. (2015) report several qualitative results.
For example, the ULD system discovered words such as globalization and collaboration which
occurred frequently in the lectures; for both of these words, the system also discovered
the productive -ation suffix. Because the purpose of adaptor grammars is to compactly
store parse trees, certain frequently occurring morphemes like -able and -ation were saved.
Simultaneously, certain sequences of words, like the Arab Muslim word, were identified as
lexical items if they were common enough in the data. This calls into question the usefulness
of word accuracy in evaluating an unsupervised system like ULD. There are sequences of
words (such as some idioms) that almost always occur in that order, especially in a given
context. Such collocations might reasonably be considered one lexical item by a language
learner presented with only an acoustic input. For example, the grouping of two lexical
items into one can be seen in the common malapropism for all intensive purposes. It is not
impossible then that either through a misunderstanding, or due to the relative frequency
of a phrase, we treat a sequence of words as one stored unit. Since our own storage and
production process for lexical items is unclear, and, in the case of some idioms and multi-word
units, independent of orthographic word boundaries, there is no definitive way of knowing
how closely the discovered lexicon corresponds to our internal one.

Such considerations tie closely into the overall linguistic question of balancing productiv-
ity and reuse; namely, how much of our language do we compute on the fly (productively)
and how much do we store and reuse statically. Both productivity and reuse have their costs
and benefits: computing everything is inefficient, especially for high-frequency terms, but it
lets us avoid storing anything; storing everything, on the other hand, makes it very efficient
to produce sentences and terms that have already been used, but precludes the creation of
novel sentences or terms, and entails storing sentences which are never reused. The opti-
mal solution is to reuse those linguistic units which occur often, and compute those larger
ones which are rare or unique. By modeling this balancing act mathematically with the
Pitman-Yor and Dirichlet processes, ULD offers a rare glimpse at the internal mechanism of
a productivity-reuse system. As the storage of super-word units in the results of Lee et al.
(2015) shows, the optimal balance may not dovetail perfectly with our conception of the
units in question.
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6 Variational improvements

Given the faster convergence rate and multiprocessing capabilities of our variational ULD
framework, more experiments can be run in a shorter time-frame, and the system scales to
large audio corpora. The following data shows the improvements that variational systems
made over sampling approaches for both the DPHMM and adaptor grammar components of
the ULD model.

6.1 DPHMM improvement

Ondel et al. (2016) found that the variational was both faster and more accurate than
the same model using Gibbs sampling. While training the latter took approximately 11
hours on one core, it took less than 30 minutes to train the variational DPHMM on 300
cores. Additionally, the variational model had a better mutual information score between
discovered phones and previously labeled phones.

6.2 Adaptor grammar improvement

Cohen (2011) replicated the word-segmentation experiments run by Johnson (2008), and
found that the variational system converged in fewer iterations (full passes through the
dataset). While the sampling algorithm took 2000 iterations to converge, the variational
system only needed 40. In addition, the variational system was faster when run on multiple
cores. Inference by sampling took 2 hours and 14 minutes. The variational adaptor grammar
needed 2 hours and 34 minutes when run on a single core—however, once distributed to 20
cores, it finished in 47 minutes.

7 Future Work

With this variational implementation of ULD, we plan on running experiments which test
lesioning different parts of the model; in Lee et al. (2015), the acoustic model was removed,
and then the noisy channel was further removed from that lesioned version. We are par-
ticularly interested in ablating the noisy channel but keeping the acoustic model in place,
which would allow the DPHMM to continue relabeling and re-segmenting PLUs, but limit
its interface with the adaptor grammar. A variational model also inherently creates novel
opportunities for experimentation. Recall that in the variational setting, we introduce a
family of new distributions indexed by parameters which can be initialized randomly, but
can also be given deliberately chosen values. Testing different initializations can potentially
reveal more about the phenomena being modeled while providing useful intuitions for fu-
ture work. Additionally, the empirical Bayesian framework implemented in both Zhai et al.
(2014) and Ondel et al. (2016) not only optimizes the variational parameters, but also finds
the best value for the hyperparameters of the model, which can play an important role in
future models. Thanks to the new multiprocessing capabilities of our ULD model, we will be
able to run larger experiments by distributing the computation to a cluster. For example, we
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will be able to test the full system on large speech databases with gold standard alignments
(e.g. the TIMIT corpus), and apply the learning algorithm to a variety of languages.

Given its the language-independent nature and the latent variables it infers, ULD pro-
vides a framework for generating linguistic and automatic speech recognition (ASR) resources
such as pronunciation dictionaries, particularly for under-resourced languages. Pronuncia-
tion dictionaries, which map words to their phonetic transcriptions, are required for forced
alignment (which has many research and industrial applications) as well as in most ASR
systems (Besacier et al., 2014). With improved accuracy, ULD might in aid in lowering the
production cost associated with generating such dictionaries, while simultaneously helping
to fill a significant void in resources for specific accents and under-resources languages, whose
current scarcity contributes to the under-representation of these languages in some areas of
research and industry.

The utility of ULD’s complete learning framework is not limited to research and indus-
trial development. In the developing world—where many of under-resourced languages can
be found—literacy and computer literacy are major issues facing millions. While ASR appli-
cations have been credited with improving literacy (Adams, 2005) and increasing computer
accessibility, Plauche et al. (2006) point to the prohibitive cost of producing the requisite
resources as the main obstacle to developing these technologies. An unsupervised system
such as ULD could break this barrier by increasing the speed at which production can take
place and lowering the cost.

8 Conclusion

We have presented a language-independent variational Bayesian inference model for the
fully unsupervised induction of a complete hierarchy of linguistic units directly of an acous-
tic input, based on the sampling-based approach to the same problem by Lee et al. (2015).
Our variational model promises significant decreases in amount of time required to train the
model by virtue of the ease with which it can be distributed to multiple cores. For the acous-
tic model and adaptor grammar, we discussed experimental results and speed improvements
made by their existing variational Bayesian implementations (Ondel et al., 2016; Cohen et al.,
2010; Zhai et al., 2014). These results introduce questions regarding the current methods of
evaluating unsupervised models while concomitantly offering a glimpse at a mathematical
system for productivity and reuse thought to be similar to our own internal mental represen-
tation. Lastly, we discussed future experiments that our variational framework will enable
us to conduct, as well as several real-world applications of our model.
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A Deriving the ELBO

A.1 The problem

Given our generative model and our data, we would like to find a posterior distribution:
P (Z | X). Using Bayes Rule, we get: P (Z | X) = P (X|Z)P (Z)

P (X)
= P (X|Z)P (Z)∑

∀Z
P (X|Z)P (Z)

We call

the numerator of the fraction on the right the generative model. It is composed of the
product of the likelihood of the hypothesis (P (X | Z)) and the prior probability of the
hypothesis (P (Z)). Note that the former is not a probability but a measure of how well our
hypothesis fits the data. The denominator is the “marginal likelihood” of the data, P (X).
To find this, we need to marginalize out (sum over) all possible hypotheses. Because the
hypotheses are the range of values for all of the latent variables in our model, this summation
is computationally intractable. Instead of explicitly computing the posterior, we are forced
to find an approximation of it. Often, a sampling approach is used. However, sampling can
be very slow to converge and is not easily parallelizable across multiple cores. The variational
Bayesian approach, on the other hand, treats the problem of finding an appropriate posterior
distribution as an optimization problem.

• Let Z be our set of hidden variable collections:

• Let Φ be the collection of all model parameters (Pitman-Yor parameters a, b and Dirich-
let distribution parameter α.

• Let X be the set of observations. In the case of word segmentation, for example, these
would be each string of unsegmented phonemes.

• Note that our goal is to find P (Z | X), the posterior (where Z is the set of latent
variables)

• recall P (Z | X) = P (X|Z,Φ)P (Z|Φ)∑
∀Z
P (X|Z,Φ)P (Z|Φ)

A.2 Important formulae

A.2.1 Jensen’s inequality

Jensens inequality states that for a convex function f and random variable X:

f(E[X]) ≤ E[f(X)] (6)

We are using the logarithm of the probability, so the function is actually concave. Jensen’s
inequality works both ways, meaning we switch the direction of the inequality:

log(E[X]) ≥ E[log(X)] (7)

A.2.2 Expected value

Note that for discrete random variables

Eq(f(x)) =
∑
∀x

q(x)f(x) (8)
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A.2.3 Logarithms

Throughout this derivation (and the variational literature as a whole) the logarithm of
the probability is used. There are various reasons to do this. Firstly, logarithms are the
foundation of information-theoretic measures such as entropy. Furthermore, they allow us
to transform expensive multiplication and division into cheaper addition and subtraction,
and help when working with probabilities below the floating-point precision bound. Recall
these facts about logarithms:

• lim
n→0

log n = −∞

• log AB = log A+ log B

• log A
B

= log A− log B

A.3 Derivation of variational bound

The value we are looking to approximate is our posterior, which is the likelihood of the latent
variables given the data. Recall that our inference problem lies in finding the denominator
to the Bayesian equation

P (Z | X) =
P (X | Z)P (Z)∫

∀Z
P (X | Z)P (Z)dZ

Our hypotheses in this case are possible values for the latent variables in the model. This
integral (or in the discrete case, summation) is often computationally intractable, so we
introduce a variational approximation for it. One way we can do this is by using the Kullback
Leibler (KL) divergence between this intractable integral and some variational distribution
q.

1. Let qν(Z) be a family of variational distributions with variational parameter ν.

2. to get the marginal likelihood (log p(X | Φ)) we take the KL divergence between qν(Z)
and p(Z | X,Φ).

3. KL divergence is given by:

DKL(qν(Z) || p(Z | X,Φ)) = Eq[log
qν(Z)

p(Z | X,Φ)
]

= Eq[log qν(Z)− log p(Z | X,Φ)]

= Eq[log qν(Z)− log
p(Z,X | Φ)

p(X | Φ)
]

= Eq[log qν(Z)− (log p(Z,X | Φ)− log p(X | Φ))]

= Eq[log qν(Z)]− Eq[log p(Z,X | Φ)] + log p(X | Φ) (9)

(Blei and Jordan, 2006)
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Considering what KL divergence represents, it is easy to understand why it cannot be neg-
ative. From here, we can see how minimizing this equation is the same as maximizing the
lower bound on log p(X | Φ):

0 ≤ Eq[log qν(Z)]− Eq[log p(Z,X | Φ)] + log p(X | Φ)

− log p(X | Φ) ≤ Eq[log qν(Z)]− Eq[log p(Z,X | Φ)]

log p(X | Φ) ≥ Eq[log p(Z,X | Φ)]− Eq[log qν(Z)] (10)

Another method of reaching this same result uses Jensen’s inequality. Consider the log
marginal likelihood:

log p(X | Φ) = log
∑
z∈Z

p(X, z | Φ) (11)

The sum marginalizes out the hidden variables z in the joint probability distribution. Picking
any variational distribution q(z) we can multiply by q(z)

q(z)
:

log
∑
∀z∈Z

(p(x, z | Φ) ∗ q(z)

q(z)
) = log

∑
∀z∈Z

q(z)
p(x, z | Φ)

q(z)
(12)

Jensen’s inequality implies

log
∑
∀z∈Z

q(z)
p(x, z | Φ)

q(z)
≥
∑
∀z∈Z

q(z) log
p(x, z | Φ)

q(z)
(13)

This equation can be broken into:

∑
∀z∈Z

q(z) log
p(x, z | Φ)

q(z)
=
∑
∀z∈Z

q(z)(log p(x, z | Φ)− log q(z)) =∑
∀z∈Z

q(z) log p(x, z | Φ)−
∑
∀z∈Z

q(z) log q(z) =∑
∀z∈Z

q(z) log p(x, z | Φ) +H(q) (14)

(15)

where

H(q) = −
∑
∀z∈Z

q(z) log q(z) (16)

(Blei et al., 2017) This first term is of the form of our expected value definition, so our
equation becomes:
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log p(x | Φ) ≥ Eq[log p(x, z | Φ)] +H(q) (17)

This derivation yields an important fact:

log p(X | Φ)−KL(q(Z) || p(Z | X,Φ)) = Eq[log p(z, x | Φ)] +H(q) (18)

From this equation, we can see why minimizing KL divergence gives us the best possible
value for our marginal likelihood.

B Deriving Variational Updates

B.1 Mean Field Approximation

Recall our mean-field assumption was to treat each variational distribution as conditionally
independent, i.e. q(Z) =

∏
i

qi(zi). Also recall that our bound on the log marginal likelihood

was:

L(q) ≥
∑
zi∈Z

q(Z) log p(X,Z|Φ) +H(q)

Replace q(Z) with this product:

L(q) ≥
∑
zi∈Z

(∏
i

qi(zi)

)
log p(X,Z|Φ) +H(q)

L(q) ≥ E∏
i
qi(zi) log p(X,Z|Φ)[log p(X,Z|Φ)] +H(q) (19)

Using the chain rule and by expanding the entropy term, we can rewrite this expression
as

log p(X|Φ) +

|Z|∑
i=1

Eq[log p(zi|X, z1, ..., zi−1,Φ)]−
|Z|∑
i=1

Eq[log qνi(zi)] (20)

Since p(X|Phi) does not depend on the variational parameter νi it factors out as a
constant (recall that this is a lower bound, not an exact equality). We can reorder the
elements of Z in any way we wish. If we reorder them each time so that zi comes last, we
can say:

Li = Eq[log p(zi|Z−i, X,Φ)]− Eq[log qνi(zi)] (21)

22



(Blei and Jordan, 2006)
Note that for any exponential family distribution qνi ,

qνi(zi) = h(zi) exp
{
νTi zi − a(νi)

}
(22)

where a(νi) is the cumulant function, which for the first three derivatives is equivalent
to the corresponding derivatives of the same distribution’s moment generating function. We
can rewrite our equation using this form for qνi(zi):

Li = Eq[log p(zi|Z−i, X,Φ)]− Eq
[

log
(
h(zi) exp

{
νTi zi − a(νi)

})]
= Eq[log p(zi|Z−i, X,Φ)]− Eq

[
log (h(zi))) + νTi zi − a(νi)

]
= Eq[log p(zi|Z−i, X,Φ)]− Eq

[
log (h(zi)))

]
− Eq[νTi zi] + Eq[a(νi)]

= Eq[log p(zi|Z−i, X,Φ)]− Eq
[

log (h(zi)))
]
− νTi a′(νi) + a(νi) (23)

Note that Eq[νTi zi] = νTi a
′(νi) since Eq(zi) = a′(νi) and νTi factors out as a constant when

taking the expectation with respect to q. The goal of variational inference is to cast the
intractable calculation of the posterior as an optimization problem. In most optimization
problems, there are two general steps: (1) computing an objective function which allows us
to (2) optimize the function by adjusting the parameters.

Recall that to avoid expensive computations, we employ exponential family distributions
which allow us to simplify the problem. Our goal is to optimize the function by adjusting
the variational parameters, so we take the partial derivative of our function with respect to
νi:

δ

δνi
Li =

δ

δνi

(
Eq[log p(zi|Z−i, X,Φ)]− Eq

[
log (h(zi)))

]
− νTi a′(νi) + a(νi)

)
=

δ

δνi
(Eq[log p(zi|Z−i, X,Φ)]− Eq[log h(zi))])−

(
νTi a

′′(νi) + a′′(νi)
)

+ a′′(νi)

=
δ

δνi
(Eq[log p(zi|Z−i, X,Φ)]− Eq[log h(zi))])− νTi a′′(νi) (24)

Setting this to 0 we get:

0 =
δ

δνi
(Eq[log p(zi|Z−i, X,Φ)]− Eq[log h(zi))])− νTi a′′(νi)

νTi a
′′(νi) =

δ

δνi
(Eq[log p(zi|Z−i, X,Φ)]− Eq[log h(zi))])

νi =

(
δ

δνi
Eq[log p(zi|Z−i, X,Φ)]− δ

δνi
Eq[log h(zi))]

)
(a′′(νi))

−1
(25)

If p(zi|Z−i, X,Φ) is also a member of the exponential family, it can be rewritten:
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p(zi|Z−i, X,Φ) = h(zi) exp
{
gi(Z−i, X,Φ)T zi − a (gi(Z−i, X,Φ))

}
(26)

where gi(Z−i, X,Φ) is the natural parameter of distribution p. Replacing p(zi|Z−i, X,Φ)
(first in the expected values for the sake of readability) and taking the derivative gives us

Eq[log p(zi|Z−i, X,Φ)] = Eq[log h(zi)] + Eq[gi(Z−i, X,Φ)]Ta′(νi)− Eq
[
a (gi(Z−i, X,Φ))

]
(27)

δ

δνi
Eq[p(zi|Z−i, X,Φ)] =

δ

δνi
Eq[log h(zi)]

+

(
δ

δνi

(
Eq[gi(Z−i, X,Φ)]T

)
a′(νi) + Eq[gi(Z−i, X,Φ)]Ta′′(νi)

)
− δ

δνi
Eq
[
a (gi(Z−i, X,Φ))

]
=

δ

δνi
Eq[log h(zi)] + Eq[gi(Z−i, X,Φ)]Ta′′(νi) (28)

Notice that many of the expectations drop out. Substituting this for δ
δνi

(Eq[log p(zi|Z−i, X,Φ)])
in our first differentiation, we get:

νi =

(
δ

δνi
Eq[log h(zi)] + Eq[gi(Z−i, X,Φ)]Ta′′(νi)−

δ

δνi
Eq[log h(zi))]

)
(a′′(νi))

−1

=
(
Eq[gi(Z−i, X,Φ)]Ta′′(νi)

)
(a′′(νi))

−1

= Eq[gi(Z−i, X,Φ)] (29)

So the optimal value (when the derivative is 0) of νi is νi = Eq[gi(Z−i, X,Φ)].

B.2 Conjugacy

Now we need to obtain a closed-form expression for Eq[gi(Z−i, X,Φ). First, let Φ becomposed
of 2 parts φ1 and φ2, where φ1 is the number of observations contributed by the prior, and
φ2 corresponds to the total effect of the observations on the sufficient statistic. Because of
the factorization and exponential family assumptions we made earlier, we can say:

Pπ(zi|φ1, φ2) = f(φ1, φ2) exp
{
ηTφ1 − φ2a(η)

}
= f(φ1, φ2)g(η)φ2 exp

{
ηTφ1

}
∝ g(η)φ2 exp

{
ηTφ1

}
(30)

where η are the natural parameters for the distribution, a(η) is the cumulant function,
and f(φ1, φ2) is a normalizing function.

Assuming the posterior over data and local hidden variables P (X,Z−i | zi) is also in the
exponential family and factorizes, we can say that for one data point xn
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P (xn, zn | zi) = h(xn, zn)g(zi) exp
{
zTi t(xn, zn)

}
⇒ P (X,Z−i | zi) =

∏
zn∈Z−i

h(xn, zn)g(zi)
N exp

{
zTi t(xn, zn)

}
(31)

where t(xn, zn) is the sufficient statistic, which in most cases is simply the count of
occurrences of xn or zn. By Bayes rule, the distribution over the selected hidden variable
rewrites as

P (zi|X,Z−i,Φ) ∝ P (X,Z−i|zi)P (zi|Φ)

=
N∏
n=0

h(xn, zn)g(zi) exp
{
zTi t(xn, zn)

}
g(η)φ2 exp

{
ηTφ1

}
∝ g(zi)

N exp
{
zTi t(xn, zn)

}
g(η)φ2 exp

{
ηTφ1

}
∝ g(zi)

N+φ2 exp

{
zTi
(
φ1 +

∑
zn∈Z−i

t(xn, zn)
)}

(32)

Because all exponential family distributions have conjugate priors, this result implies that
the posterior P (zi | X,Z−i,Φ) is the same type of distribution as the prior with parameters:

P (zi|X,Z−i,Φ) = Pπ
(
zi|φ1 +

∑
zn∈Z−i

t(xn, zn), φ2 +N
)

(33)

This means that the natural parameters of the posterior distribution on global hidden
variables has the natural parameters φ2 +

∑
zn∈Z−i

t(xn, zn) and φ2 +N , giving us a closed form

for our expectation in (29):

Eq[gi(Z−i, X,Φ)] = Eq

[
φ1 +

∑
zn∈Z−i

t(xn, zn)

φ2 +N

]
(34)

(Hoffman et al., 2013)

B.3 Alternative Form

We can derive an alternative form for an optimal setting of q without the exponential family
requirements by following the method described in Bishop (2006). Recall that

L(q) =
∑
zi∈Z

((∏
i

qi(zi)

)
log p(X,Z|Φ) +

∑
i

qi(zi)
)
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This can be rewritten as

L(q) =
∑
∀zj

qj(zj)
( ∑
zi 6=zj

log p(X,Z)
∏
i 6=j

qi(zi)
)
−
∑
∀zj

qj(zj) log qj + const

=
∑
∀zj

qj(zj) log p̃(X, zj)−
∑
∀zj

qj(zj) log qj(zj) + const (35)

where log p̃(X, zj) = Ei 6=j[log p(X,Z)] + const and Ei 6=j is the expectation taken with
respect to all distributions q except qi. Maximizing (35) is equivalent to minimizing the
KL divergence, with the minimum occurring when qj(zj) = p̃(X, zj). Thus the optimal
distribution q∗j (zj) can be written:

log q∗j (zj) = Ei 6=j[log p(X,Z)] + const (36)

(Bishop, 2006)

C Derivation of Updates

As an example of how variational updates can be found, we show the explicit derivation of
the Beta distribution updates for the adaptor grammar portion of the ULD model.

Recall that in the generative process, each stick-weight proportion νi is drawn from a
Beta distribution prior parametrized as Beta(1− bA, aA− ibA). Recall also that our updates
take the general form

Eq[gi(Z−i, X,Φ)] = Eq

[
φ1 +

∑
zn∈Z−i

t(xn, zn)

φ2 +N

]
(37)

where φ1 and φ2 are the parameters of the prior. This implies that in this case, φ1 = 1−bA
and φ2 = aA − ibA. The sufficient statistic t(xn, zn) is the number of times stick i was the
final stick (i.e. the process did not continue after i). N is the total number of times any
stick was the final one, which is equivalent to the sum over all sticks of t(xn, zn). Formally,

∑
zn∈Z−i

t(xn, zn) =
∑
B∈M

NB∑
k=1

f(A
∗→ sA,k, zk) (38)

which is the sum over all adapted nonterminals of the sum up to the truncation level of that
nonterminal (the maximal stick index) of the count of the grammaton expansion of A to the
substring sA,k in the derivation tree zk. As mentioned before,

N =
i−1∑
j=1

∑
B∈M

NB∑
k=1

f(A
∗→ sA,j, zk) (39)
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Putting (37),(38), and (39) together, the full update becomes

[
γ1
A,i

γ2
A,i

]
= Eq

 1− bA +
∑
B∈M

NB∑
k=1

f(A
∗→ sA,k, zk)

aA − ibA +
i−1∑
j=1

∑
B∈M

NB∑
k=1

f(A
∗→ sA,j, zk)



=

 1− bA +
∑
B∈M

NB∑
k=1

f̃
(
A
∗→ sA,k, sB,k

)
aA + ibA +

i−1∑
j=1

∑
B∈M

NB∑
k=1

f̃
(
A
∗→ sA,j, sB,k

)
 (40)

where f̃
(
r, sB,k

)
is the expected count of rule r in the derivation trees of string sB,k which

is headed by nonterminal B and spans k units, and A
∗→ sA,k indicates that non-terminal

A expands to the string headed by A and spanning k in its grammaton form (Cohen et al.,
2010; Zhai et al., 2014).
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