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ABSTRACT
Microtask platforms are becoming commonplace tools for
performing human research, producing gold-standard data,
and annotating large datasets. These platforms connect re-
questers (researchers or companies) with large populations
(crowds) of workers, who perform small tasks, typically tak-
ing less than five minutes each. A topic of ongoing research
concerns the design of tasks that elicit high quality annota-
tions. Here we identify a seemingly banal feature of nearly
all crowdsourcing workflows that profoundly impacts work-
ers’ responses. Microtask assignments typically consist of
a sequence of tasks sharing a common format (e.g., circle
galaxies in an image). Using image-labeling, a canonical mi-
crotask format, we show that earlier tasks can have a strong
influence on responses to later tasks, shifting the distribution
of future responses by 30-50% (total variational distance).
Specifically, prior tasks influence the content that workers fo-
cus on, as well as the richness and specialization of responses.
We call this phenomenon intertask effects. We compare in-
tertask effects to framing, effected by stating the requester’s
research interest, and find that intertask effects are on par or
stronger. If uncontrolled, intertask effects could be a source
of systematic bias, but our results suggest that, with appro-
priate task design, they might be leveraged to hone worker
focus and acuity, helping to elicit reproducible, expert-level
judgments. Intertask effects are a crucial aspect of human
computation that should be considered in the design of any
crowdsourced study.
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INTRODUCTION
There are many tasks that are trivial for people, but difficult
to solve programmatically. Such tasks include tagging and
categorizing images, coding and transcribing media, and per-
forming surveys for academic or market research purposes
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(see Table 1 for a listing of task types seen on the Amazon’s
Mechanical Turk microtask platform). Many tasks are ill-
defined, in the sense that they do not have a clear “correct”
response, and require high-level, qualitative judgment. Mi-
crotask platforms are marketplaces that help fill the gap in
current computational capabilities, by matching requesters,
who need to have such tasks completed, with human workers.
Amazon’s Mechanical Turk (MTurk)1, and CrowdFlower2

are two popular microtask platforms.

This form of crowdsourcing embeds workers in a controlled
but flexible task infrastructure. To the requester, workers
seem almost like input-output devices. This provides much of
the flexibility and cost-savings of fully automating the work
in a computer program: the workforce is available on demand
over the Internet using automated scripts, without the need
for interviews or contracts [37, 11]. Work can be performed
at a fraction of the cost of traditional methods for recruiting
temporary workers or experimental subjects [4]. Many re-
searchers consider microtask platforms as a new kind of hu-
man computing architecture [11].

The flexibility and cost-effectiveness of microtask labor has
led to a surge in demand from industry and academia [37,
4]. More recently microtask platforms have been assessed
as a way to supplement expert human resources to increase
capacity in critical applications, such as in medical diagnostic
functions, with promising results [35].

Naturally, researchers have investigated the factors affecting
the reliability of microtask work, including the design of the
task interface [14], the design of workflows (how work is di-
vided into tasks) [24, 17, 25], and the framing of tasks [23, 7,
33]. Here we draw attention to a ubiquitous yet overlooked
feature of microtask work: the tendency for workers to per-
form many similar tasks in quick succession.

This tendency arises from a combination of worker pref-
erences and the logistics of serving small tasks. Workers
have a preference for performing sequences of similar mi-
crotasks [9], probably because it reduces cognitive load aris-
ing from task-switching [1]. Moreover, as workers com-
plete task assignments, they must continually switch between
working on an assignment and choosing their next assign-
ment (weighing such factors as the wage paid, and effort re-
quired). Since microtasks are very short, it makes sense to
bundle tasks together into larger assignments, to reduce the
overhead of switching between working on assignments and
choosing them. This may explain why the predefined assign-
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Task Type Count Fraction (%)
Image transcription 57 28.5
Information gathering 46 23.0
Image labeling and classification 36 18.0
Copy writing and editing 18 9.0
Text tagging and classification 15 7.5
Audio/Video transcription 12 6.0
Survey 9 4.5
Unknown 7 3.5

Table 1. Frequency of various broad task types seen among the 200
most recently posted tasks on Amazon’s Mechanical Turk, accessed on
12 February, 2015.

ment templates available on microtask platforms generally
bundle many tasks together by default3.

Psychological experiments show that the exposure to stim-
uli immediately before performing a task influences perfor-
mance, an effect known as priming [15, 21, 3, 36]. The ef-
fect of priming appears to be stronger when the modality of
the prime is the same as the task [36]. Thus, for the typical
microtask worker, who does many similar tasks in quick suc-
cession, there is a potential for earlier tasks to influence later
ones, via priming or other mechanisms.

We seek to determine if any such effects in fact occur and
if so, to measure and characterize them. Certain tasks ad-
mit a well-defined notion of “correct” and “incorrect” re-
sponses. But many tasks involving qualitative judgment do
not. So, rather than simply characterizing effects on accu-
racy, we seek to provide a generalized measure of the extent
to which prior tasks can alter the distribution of responses to
later tasks. Measuring the extent of the shift in a distribution
of responses is substantially harder than simply determining
whether an effect has occurred. Our first contribution is a
statistically grounded method for doing so.

To investigate the phenomenon in a highly generalizable set-
ting, we sought a task that would involve qualitative judg-
ment and enable relatively unconstrained responses. We also
sought a task that would be a typical exemplar of the kinds
of tasks actually seen on microtask platforms (see Table 1 for
examples). For this purpose, we adopted image-labeling as a
canonical microtask, a task in which workers provide descrip-
tive labels to images using free-text inputs. Image labeling is
a qualitative task without clearly “correct” or “incorrect” re-
sponses, and is among the most common kinds of tasks on
MTurk (see Table 1). If effects from earlier tasks arise in our
setup, similar effects could be expected in a large number of
microtasks and crowdsourced workflows where workers are
called upon to provide qualitative judgment.

In our experiments, workers label a series of images, one at
a time. Depending on the treatment to which a worker is as-
signed, we vary the images in the first five tasks, while keep-
ing those in the last five tasks the same. For example, in one
experiment, the first five images shown to one group of work-
ers contain food, while those shown to the other contain (non-

3e.g. on mturk.com and crowdflower.com

food) objects. The last five images for both groups contain
both food and objects.

Our results show that a worker’s responses are strongly influ-
enced by the content of tasks performed beforehand, leading
to as much as 50% total variational distance (see Figure 1 for
illustrative definition of total variational distance). Using the
WordNet knowledge base, we analyze worker’s word choices
to characterize the nature of these effects in detail. We find
that, when workers label a series of images that are more
similar, their responses become more specialized and more
diverse. Prior tasks can shift the topical focus of worker’s
labels, inducing them to focus on different aspects of the im-
ages.

As a point of comparison, we also conduct framing exper-
iments, in which we alter the framing of microtask assign-
ments, in terms of the stated purpose of the task, or by nam-
ing the funder. Remarkably, the effects of prior microtasks,
which are virtually ubiquitous, are on par with, or stronger
than, the effects of overtly framing an assignment.

We call the effects that earlier tasks exert on later ones inter-
task effects. If, as has been suggested [11], microtask plat-
forms are to be considered as a new form of computing ar-
chitecture, it will be necessary to reconcile the fact that the
human computing elements exhibit hysteresis, meaning that
microtask workers’ outputs depend on the history of their in-
puts.

Unraveling the psychological mechanisms that give rise to
such strong effects will require further investigation. We de-
scribe a possible mechanism based on positive and negative
priming, consistent with the observations from our experi-
ments. Irrespective of the underlying mechanism, this very
strong effect might be exploited in task design to tune worker
focus and acuity.

As our main contributions, we

• derive a method for measuring changes in response distri-
butions;
• measure the strength of intertask effects;
• show that intertask effects are stronger than, or on par with

framing;
• show that when completing a series of similar microtasks,

worker’s responses become more specialized and diverse;

The rest of the paper is organized as follows. In the next
section, we review the relevant prior work. We then present
our method for measuring changes to response distributions.
Next we present our first experiment which measures inter-
task effects and compares them to framing. We then describe
a second experiment which extends these results, addressing
questions raised by the first experiment. We conclude by dis-
cussing interpretations and ramifications, suggesting a pos-
sible mechanism for intertask effects based on priming, and
describing directions for future work.

mturk.com
crowdflower.com


PRIOR WORK

Effects of microtask design on response quality
Microtask platforms are increasingly used to clean and cod-
ify datasets, administer experiments with human participants,
and distribute surveys. Accuracy and replicability are crucial
in all of these applications.

There is ongoing research investigating how the design of mi-
crotasks, and their context, affect the quality of responses.
One of the most basic issues with crowd work is that work-
ers vary in the amount of attention they pay to tasks, and in
their understanding of instructions. Workers who disregard
or misunderstand instructions can be effectively screened out
by including quiz-questions among the tasks, while instruc-
tion comprehension can be improved using a training phase
before actual tasks begin [26, 19]. In addition, providing
real-time feedback to workers encourages higher-quality re-
sponses, while prompting workers to review their work ac-
cording to a set of criteria increases the worker’s response
quality over time [12].

The design of the task interface also has important effects on
response quality. A simpler user interface can improve accu-
racy [14], and certain input controls are inherently less effort-
ful and error-prone than others [8].

Since microtask work is generally paid, wage is a basic pa-
rameter in the requester’s control that might influence re-
sponse quality. One might expect a higher wage to buy bet-
ter performance, but results are ambiguous. One study found
that increasing wage has no effect on response quality, but
does increase the amount of responses [28]. Another study
[19] showed that increasing wages does increase quality, but
that this effect saturates, and eventually increases in wage at-
tract a larger proportion of workers who disregard the task
instructions.

Workers have other motivations for completing tasks aside
from remuneration [19]. Researchers have attempted to ap-
peal to worker’s motivation to do work that has a meaningful
purpose: when a task was framed as assisting with medical
research, workers were more likely to participate and com-
pleted more tasks, than when they were not provided any con-
text [7]. Providing a meaningful context did not, however,
increase the quality of work.

Other studies have investigating different means of framing.
When asked to rate various policy interventions, workers em-
phasized respectively more or less punitive approaches de-
pending on whether the phrase “crime is a beast” or “crime
is a virus” appeared in the problem description [33]. When
workers perform a task within the context of larger workflow,
explaining how the task fits into the workflow, which amounts
to a kind a framing, increased both the quantity and quality of
responses [23].

The breaking down of complex jobs into simpler tasks can
increase efficiency by enabling greater parallelism. While
this could disrupt the natural context provided by performing
the whole job as a single task, it turns out that, for complex
tasks such as writing an article, dividing the job into subtasks,

including outlining, information-gathering, and paragraph-
synthesis, actually improves the quality of the end-product
[24].

Other work investigated the effects of interruptions on task
performance [25]. There, workers completed a series of tasks
that required them to answer questions about an illustrated
map. When interruptions were introduced in the form of ei-
ther a time delay, or a different task involving a different map,
workers took longer to complete the task which followed the
interruption. However this study did not test for effects on the
quality of responses.

In a somewhat related vein, other researchers investigated
the effects of task-switching [38]. During switch-tasks (tasks
which differ in nature from the immediately preceding task),
workers were more inclined to make mistakes, and took
longer to complete the task. However, the researchers found
that by offering a performance-based bonus, which paid if
workers completed the task quickly and correctly, perfor-
mance during switch-tasks was both faster and more accurate.

However, long periods of performing the same task can lead
to fatigue, which can be relieved by well placed-interruptions.
A study [10] found that introducing “micro-diversions” pe-
riodically between tasks caused workers to complete more
tasks overall, and to complete them more quickly. This was
more pronounced for more cognitively taxing tasks.

Priming
Priming is a psychological phenomenon whereby previous
exposure to a stimulus leads to faster or more accurate re-
sponses to similar stimuli [15], or to lower response thresh-
olds [21]. Priming occurs by means of pre-activation, which
can influence stimulus encodings (during perception) [21],
the top-down application of object-knowledge [15], and
memory access [3]. Priming is more effective when the prime
and the target task involve the same kind of activity. For ex-
ample, exposing participants to an image helps them subse-
quently recognize that image when shown very briefly in a
tachistoscope; however, being presented with a related word,
and reading it aloud, does not [36].

As we have mentioned, workers prefer to perform a series of
tasks that are similar to one another. Moreover, many micro-
tasks involve tasks based on visual and auditory perception
similar to the kinds used in priming studies. Thus, in a typ-
ical microtask assignment, there are many opportunities for
priming to arise.

Researchers have begun to explore the potential applications
of priming in microtask design. One study found that show-
ing workers an image of a laughing baby (so as to stimulate
positive affect), led to better performance in a task requiring
creativity [27]. This shows that priming effects can play a
role in microtask design. The question we seek to answer,
however, is whether earlier tasks can affect responses to later
tasks.

Taken together, the prior work suggests that, beyond the de-
sign of tasks themselves, the design of the context of tasks
has a major effect on responses. There is reason to believe
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Figure 1. Normal distributions exhibiting a total variational dis-
tance of (A) 50% and (B) 30%. The total variational distance is the
non-overlapping portion of the distributions, e.g. in (A) it is given by
θ = a1/(a1 + a2) = a3/(a2 + a3).

that, even in a series of similar tasks, earlier microtasks may
influence later ones, such as through a priming mechanism.
However, no direct investigation of whether this phenomenon
exists has yet been made, which is the goal of the present
work.

MEASURING CHANGES TO RESPONSE DISTRIBUTIONS
When a prior task influences a later one, this influence will
manifest as a shift in the distribution of responses workers
provide for the later task. A variety of tests exist to determine
whether two samples, i.e. sets of responses, come from dif-
ferent distributions, most notably the χ2 test. However, such
tests do not tell us how much two distributions differ, and
hence how strongly the initial task’s influence is.

Determining the strength of intertask effects amounts to mea-
suring a distance, or divergence, between response distribu-
tions. We will present a method for bounding a kind of di-
vergence known as total variational distance4, which we will
henceforth denote by θ. The value of θ between two distribu-
tions P and Q is the fraction under the graph of P that does
not overlap with that under Q (or vice-versa; see Figure 1).
Formally:

θ =
1
2

∑
x∈X

|p(x) − q(x)| , (1)

Where p(x) and q(x) are the respective probabilities that a
worker submits response x, from a set of possible responses
X, under distributions P and Q. The divergence is constrained
to 0 ≤ θ ≤ 1 (or from 0 to 100%). When θ = 100%, the distri-
butions do not overlap at all. When θ = 0%, the distributions
are identical. For reference, the distributions plotted in Fig-
ure 1A and B have θ = 50% and θ = 30% respectively.

Empirically measuring the divergence between distributions
is a matter of ongoing research [34, 2, 6]. In the “naive” ap-
proach one first uses the samples to reconstruct empirical dis-
tributions, by calculating their maximum likelihood param-
eters. Then, one substitutes the empirical values of p(x) and

4 Other formulations such as the Kullback-Leibler and Jensen-
Shannon divergence can be related to the total variational distance.

q(x) into Equation 1 [2]. For example, one might directly esti-
mate p̂(x) = Nx/N, where Nx is the number of times response
x is observed among N total responses.

However this approach can drastically overestimate θ [34].
As an illustrative example, suppose that we have sampled two
sets of 1000 words from possibly different distributions, and
that we wish to estimate the divergence between these distri-
butions. It turns out that, if both sets of words were actually
drawn from an identical Zipf distribution5, the naive approach
would typically lead one to report θ̂ ≈ 65%, even though, in
reality θ = 0% (this can be shown by simulated sampling).

Nevertheless, we can establish a lower bound for θ by ex-
ploiting a fact about the theoretical limits on the accuracy of
a classifier algorithm. The intuition is as follows: suppose
workers are shown one of two alternative designs6 for an oth-
erwise similar task, and that we build a classifier which, based
on a worker’s response, infers which of the designs had been
used. If worker’s responses are not affected by the design al-
ternative, then the classification problem will be hard, and the
classifier’s accuracy poor. Conversely, if the classifier accu-
racy is good, then design alternative must have had a strong
effect on the response distribution.

Stated formally, any classifier algorithm, A, that takes the
response, x, of a worker, and guesses the design that elicited
the response (from two possibilities: design1 or design2), will
do so with accuracy ηA, that is bounded according to:

θ ≥ 2ηA − 1, (3)

where θ is the total variational distance between the distribu-
tions of responses to design1 and design2.

We can establish Inequality 3 by considering an optimal
classifier having accuracy η∗. Let us assume that workers
are shown design1 or design2 with equal probability. If the
worker gives the response x, the optimal classifier must guess
that the worker was shown the design most likely to elicit x.
In other words, if pi(x) is the probability that a worker shown
designi responds with x, then it is optimal to guess that the
worker saw design j, where j = arg max j p j(x).

Of course, neither p1(x) nor p2(x) are known. But, on seeing
x, the probability that such a classifier would be correct is:

Pr{correct|x} =
1
2
+
|p1(x) − p2(x)|

2(p1(x) + p2(x))
(4)

Summing over all possible responses that a worker could pro-
vide, x ∈ X, weighted by the probability of observing x, we

5The Zipf distribution is a model for word frequencies [31, 40]:

p(x) =
x−1∑∞

n=1 x−1 , (2)

where p(x) is the probability of the xth most common word.
6We use “design” in a general sense, to include both the design of the
task and of its context. In particular, the “design” might include the
selection of tasks that were shown beforehand, or the use of framing.



Figure 2. Examples of images used in initial tasks for the (A) food and (B) objects treatments of intertask-food-objects; (C) test tasks for intertask-food-
objects and frame-food-objects; initial tasks for the (D) food and (E) culture treatments of intertask-food-culture; and (F) test tasks for intertask-food-
culture and frame-food-culture.

obtain the accuracy of the optimal classifier:

η∗ =
∑
x∈X

Pr{correct|x}Pr{x} (5)

=
∑
x∈X

(
1
2
+
|p1(x) − p2(x)|

2(p1(x) + p2(x))

) (
p1(x) + p2(x)

2

)
(6)

=
1 + θ

2
(7)

Since no classifier can be more accurate than an optimal clas-
sifier, it follows that, for any practical classifier with accuracy
ηA, the bound θ ≥ 2ηA − 1 holds.

Thus, we can establish a lower bound on θ by first building
a classifier that infers the design shown to workers from their
responses, and then measuring its accuracy.

EXPERIMENT 1

Setup
The first experiment we performed consisted of two sub-
experiments which we will call “intertask” and “framing”, be-
cause they are respectively designed to measure intertask and
framing effects. The experiment was performed on MTurk
using 476 workers. Workers could only participate once in
a given experiment, and could only participate in one of the
experiments we present here. Workers were required to have
had 90% of their previously submitted work on Mturk ac-
cepted by other requesters to participate. No other screening
was applied to workers.

The experiment was conducted using a single HIT7. Work-
ers who accepted the HIT were randomly assigned to one
of the two sub-experiments. Both sub-experiments consisted
of two treatments, which we call “food” and “culture”, and
7 On MTurk, a HIT (or Human Intelligence Task) is the smallest
assignable unit of work. The use of “Task” in HIT differs from
that used here; here labeling a single image is considered to be one
“task”, and so a HIT is actually composed of 10 tasks.

workers were also randomly assigned to a treatment, result-
ing in 119 workers per treatment. In both treatments of both
sub-experiments, workers were asked to perform ten image-
labeling tasks, each of which required the worker to assign
five descriptive labels to an image. Labels had to contain at
least two letters to be accepted. Workers were paid USD$0.45
for their work. In all cases, the last five tasks were identical
among all treatments (and across sub-experiments), and were
presented in the same order. These last five tasks constituted
the “test tasks”, whose distribution of responses could admit
intertask or framing effects.

In the intertask sub-experiment, we varied the first five tasks
given to workers based on the treatment. Workers assigned
to the “food” treatment were shown images of food (see Fig-
ure 2A), while workers assigned to the “culture” treatment
were shown other kinds of cultural depictions, such as dance,
sport, and music8 (see Figure 2B). However, within a given
treatment, workers were shown the same images in the same
order. As mentioned, workers from both treatments then per-
formed the same five test tasks. The test tasks consisted of im-
ages depicting meals of diverse ethnic origin (see Figure 2C).
From the perspective of the worker, there was no distinction
between the initial and test tasks.

In the framing sub-experiment, we did not vary the initial
tasks, but instead, introduced a framing slide before the tasks.
Depending on the treatment, the framing slide read “This re-
search is proudly funded by The National Foundation for Nu-
tritional Awareness”, or “. . . by the Global Foundation for the
Recognition of Cultures”. The intention was to frame the task
by providing the name of a (fictitious) funder, while using
names that invite the worker to focus on different aspects of
the image content. Initial tasks were still included to ensure
that learning or fatigue effects were equalized between the

8 We do not assert that cultural practices can be cleanly separated
into food-related and non-food related ones, nor is a strict division
necessary for our analysis.
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sponses given by workers on test tasks in Experiment 1, when they have
been shown different initial tasks (intertask), or been exposed to dif-
ferent framing (framing), as determined using naive Bayes classifiers.
Standard error bars are shown.

sub-experiments. For the initial tasks, we used the same im-
ages as had been shown to the food treatment of the inter-
task sub-experiment. If intertask effects exist, any choice of
images for the initial tasks will have an effect. This choice
makes the food treatments of both sub-experiments very sim-
ilar, so that the culture treatments of both sub-experiments
can be viewed as perturbations from a similar baseline. The
test tasks were the same as for the intertask sub-experiment.

Manual inspection showed that the vast majority of labels
were of high-quality. Less than 1% of submissions were prob-
lematic, having redundant labels or entries that were not En-
glish words. We chose to include all submissions for analysis
in the experiments presented here.

Results

Existence of intertask and framing effects.
Looking at the frequencies with which workers used words,
we tested for heterogeneity between the two treatments of
each sub-experiment. For the intertask sub-experiment, we
found the responses for the two treatments differed signifi-
cantly (by χ2 test, p < 0.001), demonstrating that intertask
effects do exist. However, we did not find significant effects
due to framing (p = 0.29).

Testing for heterogeneity of word-frequencies was based on
Pearson’s χ2 test with Yates’ correction. In linguistics ap-
plications, the use of a χ2 to test for heterogeneity between
corpora has been called into question, because there is fre-
quently heterogeneity within a given corpus [22]. This occurs
because certain documents in a corpus will regard certain top-
ics, leading to bursty word usage. While our setup is substan-
tially remote from the applications for which this concern was
raised, one could argue that the responses to a given treatment
constitute a “corpus”, and the responses of a given worker to
a “document”. To address this concern, we randomly split
responses to given treatment into two sets, and tested for het-
erogeneity between the sets. In all cases, we failed to find
heterogeneity within a given treatment (with p > 0.3 for all
treatments and p > 0.8 for most). These results hold for Ex-
periment 2, to be discussed later. Thus, the heterogeneity we
observed between the intertask treatments indicates a mean-
ingful effect.

Strength of intertask and framing effects.
Having affirmed the existence of intertask effects, we sought
to measure their strength, i.e. θ. To measure θ we created
a naive Bayes classifier based on a multinomial distribution
over the word frequencies in worker’s labels, and measured
it’s accuracy using leave-one-out cross-validation. We chose
the naive Bayes classifier for three reasons. First, it performs
well even when the number of features is large compared to
the number of training examples [5, 16]. Second, there are
no hyperparameters to optimize, which eliminates the need to
partition the response data into dev and test sets. Third, the
conditional independence assumption, normally undertaken
for pragmatic reasons [39], is probably mild in relation to im-
age labels, since they are likely to be less dependent on one
another than in a coherent passage of text. We repeated our
analysis using support vector machines and found very simi-
lar results.

To produce word frequency features, worker-submitted labels
were split on white space and punctuation, and the resulting
tokens were spell-corrected based on edit-distance to a dictio-
nary of words, followed by stop-word removal and lemmati-
zation. The spelling correction dictionary was compiled from
a combination of WordNet [13] and words collected by crawl-
ing the World Food section of allrecipes.com.

Based on the performance of the classifier, intertask effects
altered workers’ responses, leading to (a lower bound of)
51.3% total variational distance in their response distributions
(Figure 3). This represents a remarkably strong effect. Vi-
sually comparing two word frequency distributions is diffi-
cult, but Figure 1 provides an example of distributions hav-
ing θ = 50%. In contrast, the effect due to framing, was
not significantly different from zero (Figure 3). And so, in-
tertask effects were stronger than the effects due to framing
(p < 0.001)9. In other words, the microtasks themselves had
a stronger effect than framing.

When observing the classifier’s accuracy, in order to calculate
θ, the number of correct inferences made by the classifier fol-
lows a binomial distribution. The fraction of successes yields
the maximum likelihood estimate of the classifier’s accuracy
(used to generate θ), and we derived confidence intervals us-
ing the exact Clopper-Pearson method.

The results from the first experiment clearly show that inter-
task effects arise and are strong. On the other hand, we were
scarcely able to observe any effect due to framing. This raises
a few questions which we seek to answer using a second ex-
periment. The first question is simply whether the result will
replicate using different sets of images. If so, then as the
next question, we may ask how intertask effects evolve as the
worker performs tasks. Presumably, intertask effects wear off
at some point, but is it after one task, two, or more?

Using the results from Experiment 1, we could look at the
intertask effects for individual test questions, however, each

9 To compare framing and intertask effects, we approximated the
distribution of correct classifications as a normal distribution, and
performed a (two-tailed) two-proportion z-test.

allrecipes.com


question uses a distinct image, whose own content may mod-
ulate the extent to which it can be influenced by intertask ef-
fects. We cannot disentangle the effects of task position from
that of image content in Experiment 1.

In setting up Experiment 2, we also wish to increase the
strength of framing. While it was remarkable that intertask ef-
fects were stronger than the framing effects elicited in the first
experiment, perhaps the most meaningful comparison is one
which shows just how extreme framing treatments need to be
to produce effects on par with intertask effects. One factor
that may have weakened the effects of framing in Experiment
1 is the inclusion of initial tasks between the framing slide
and the test tasks. They were included to ensure that work-
ers had always completed the same number of tasks before
beginning the test tasks. However, their inclusion gives time
for differential framing effects to subside, while also gener-
ating intertask effects that are shared between the treatments,
potentially masking the framing effects that remain. In the
next experiment, we measure framing effects immediately af-
ter the application of framing.

EXPERIMENT 2

Setup
In Experiment 2 we again had “intertask” and “framing” sub-
experiments, but we included a third sub-experiment, “echo”,
which incorporated more extreme framing treatments. As be-
fore, each sub-experiment had two treatments, but this time
they were “food” and “objects”. Keeping a food treatment
enabled us to perform deeper lexical analysis of both ex-
periments (to be discussed in the results for Experiment 2).
The experiment was again performed using a single HIT on
MTurk, and involved 1666 workers. Workers were randomly
assigned to a sub-experiment and treatment upon starting the
HIT, resulting in 119 workers per treatment.

The intertask sub-experiment was similar to that in Experi-
ment 1: workers performed a set of five initial tasks, whose
images depended on the treatment to which they had been
assigned, and then performed the test tasks, which were com-
mon to both intertask treatments (as well as to both treat-
ments of the other sub-experiments in Experiment 2). In
the food treatment, the initial tasks contained images of food
(see Figure 2D). This time, care was taken to exclude any
non-food items, such as utensils or place-settings, except, in
some cases, for the plate supporting the food itself. In the
objects treatment, initial tasks contained images depicting ta-
ble settings and various non-food objects one might find in a
kitchen, but no food (see Figure 2E). The images in the test
tasks, depicted both food and non-food objects together (see
Figure 2F).

In contrast to Experiment 1, we performed five replicates of
the intertask sub-experiment, each time permuting the test
tasks. The test tasks were “rotated” in such a way that, what
was the first test task became the second, the second became
the third, and so on up until the last test task, which became
the first. In this way, each of the five positions was occupied
by each test task, enabling us to disentangle the effect of test
task position (relative to initial tasks) from test task content,
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Figure 4. (A) Lower bound total variational distance (θNB), between
responses given to test tasks in experiment 2 when workers were shown
different initial tasks (intertask), or were exposed to different framing
treatments (framing), or echoed framing treatments (echo). (B) Detail
of the effects seen from showing workers different initial tasks (corre-
sponding to intertask in panel A), now broken out for each of the five
test task positions. As workers proceeded through test tasks, intertask
effects waned but remained significant (p < 0.05) even for the fifth test
task. Standard error bars are shown.

and thereby see how intertask effects vary as a function of
position in the task sequence.

The framing sub-experiment was similar to that from Experi-
ment 1, except that we omitted initial tasks altogether, so that
the test tasks followed immediately after framing. This meant
that workers would not have performed any tasks by the time
they began the test tasks. While that will hold constant for
both framing treatments, and thus not produce a differential
effect, the workers may be more (or less) susceptible to in-
fluences during their first few tasks. One can expect framing
effects to be stronger than in Experiment 1, because of the
immediacy with which the test tasks follow the framing. The
framing slide for the food treatment read “Funded by the labo-
ratory for the visual perception of Food and Ingredients”, and
for the objects treatment it read “. . . perception of Objects and
Tools”.

We introduced the echo sub-experiment to produce the
strongest framing effects. This sub-experiment was similar to
the framing sub-experiment, but differed in two ways. First,
the framing slide stated an explicit purpose for the study:
“The purpose of this study is to understand the visual percep-
tion of Food and Ingredients” and “. . . of Objects and Tools”.
Second, before moving past the framing slide, workers were
asked what the purpose of the study was, and had to respond
by selecting the framing statement from among a short list in
a combo-box. It is because workers had to echo the framing
statement using a combo-box that we call this sub-experiment
“echo”.

Results
Existence and strength of effects.
As in the previous experiment, intertask effects led to signif-
icant changes in the words workers used to label images in
the intertask sub-experiment (p < 0.001). Based on the per-
formance of a naive Bayes classifier, the strength of the effect
was (as a lower bound) θ = 30.6% total variational distance



(see Figure 4A). Again, it is difficult to visualize the distribu-
tions of word frequencies, but for reference, the distributions
shown in Figure 1B have θ = 30%.

This time, the framing sub-experiment also showed a sig-
nificant effect. Framing induced changes in the frequen-
cies of word usage at significance (as determined by χ2 test;
p = 0.0012). However, the extent of the effect could not be
distinguished from zero (p = 0.37) based on the performance
of a naive Bayes classifier (Figure 4A). As in Experiment 1,
we found that intertask effects were stronger than framing ef-
fects (p < 0.001).

It was only in the echo sub-experiment that framing effects
were on par with intertask effects. In this sub-experiment,
framing influenced workers responses (p < 0.001), and
the performance of a naive Bayes classifier showed that it
produced (lower bound) 36.1% total variational distance in
worker responses (Figure 4A). The strength of effects due to
echoed framing could not be distinguished from that of inter-
task effects (p = 0.79).

It is remarkable that intertask effects were on par with an ex-
plicit, actively reinforced statement of the tasks’ purpose. Re-
quiring the worker to reiterate the purpose signals our intent,
as the requester, to ensure that the worker has taken note of
it, possibly leading the worker to interpret the exchange as an
instruction.

Persistence of intertask effects.
Taking advantage of the replicated intertask sub-experiment,
we created a naive Bayes classifier for each test task, when
it occurs at each test task position. Thus, for each of the five
test task positions, we obtained five separate measures of the
intertask effect strength (one for each of the test tasks, when
occupying that position). We averaged these five measure-
ments to produce the intertask effect strength for the given
task position, and these values are shown in Figure 4B.

Not surprisingly, the first test task shows the strongest inter-
task effects, at 28.1% total variational distance. The effect ap-
pears to drop suddenly after the first test task, but remain sig-
nificant right through until the fifth task position (p = 0.030).
Remarkably, even after four intervening tasks, the effect of
having performed different initial tasks shifts worker’s re-
sponses to the fifth test task by 12.4% total variational dis-
tance.

Intertask effects and concept activation.
To gain further insight into the nature of intertask effects,
we investigated the vocabulary that workers used to label
test tasks. One might expect that, within a given experi-
ment, those workers exposed to food (whether through fram-
ing or initial tasks) would label test tasks using food-related
words more often. To test this we developed an automated ap-
proach to labeling food-words based on the WordNet knowl-
edge base [13].

WordNet provides hyponym and hypernym relations between
words. A hypernym is a generalization (for example, “bread”
is a hypernym of “pumpernickel”), while a hyponym is a spe-
cialization. We took the set of food-words to be all those

Figure 5. Workers exposed to food (either in framing or initial tasks)
showed a different tendency to focus on food when labeling test tasks,
and their vocabulary in reference to food was affected. In all three plots,
positive values indicate a larger quantity for workers from the food treat-
ment. (A) Exposing workers to food significantly changed the fraction of
food references they provide, but did not necessarily increase it. (B) The
number of unique food-related words (richness) was greater for food-
exposed workers, except in the case of the framing sub-experiment of
Experiment 1 (stars indicate the threshold for a significant deviation,
α = 0.05). (C) Food-exposed workers used more specialized words to
refer to food. Standard error bars are shown in (A) and (C).



Exp. 1 intertask

spicy 26
sauce 17

indian 15
buffet 14
exotic 12

festival -11
offering -12

statue -15
india -20
food -56

Exp. 1 framing

indian 11
banquet 8

spicy 7
asian 6

variety 6
delicious -6

meat -7
festival -7

spice -7
food -9

Exp. 2 intertask

coffee 38
meal 34

cheese 34
apple 32

dessert 21
cup -30

glass -45
table -70

candle -74
food -80

Exp. 2 framing

bread 18
wine 18

cheese 16
apple 14

oil 12
table -9
meal -10

candle -12
dinner -13

food -32

Exp. 2 echo

apple 24
cheese 23

wine 15
coffee 14

oil 7
knife -24

dinner -26
fork -27

candle -35
food -55

Table 2. The five words whose frequencies as labels for the first test task increased (or decreased) the most between treatments of the given sub-
experiments. Values indicate the absolute change in number of occurrences of the word, and positive values indicate that the food-exposed treatment
used the word with higher frequency. Note that the word “food” is always the most suppressed among food-exposed workers.

reachable through a chain of hyponym relations from the
word-senses food.n.01 and food.n.02, in other words,
all words denoting a specific kind of food (a total of 3590
words). To improve the coverage of words for less common
foods, we augmented this set with all words discovered while
crawling the World Food section of allrecipes.com which
were not already in WordNet.

To validate the resulting set of food words, three indepen-
dent annotators labeled 500 words selected from workers’ re-
sponses as either food or non-food, and these were compared
to the labels derived using the automated approach. Among
those words, 26% were deemed to be food by the majority of
annotators. Taking the majority label among annotators to be
the correct one, the automatically-identified food-words had
88% correspondence to the human annotators. Treating the
automated identification of food words as another annotator,
there was an 82.4% agreement between annotators.

Using the automated labeling of food words, we found that,
contrary to expectations, workers exposed to food (via prior
tasks or framing) did not necessarily use more food-words
when labeling images in the test tasks. In the intertask treat-
ment of Experiment 1, workers from the food treatment ac-
tually used significantly10 fewer food-related words during
test tasks (Figure 5A). This finding rules out a seemingly-
simple idea that workers emphasize content seen in earlier
tasks. Seeing given content significantly influences workers’
propensity to refer to it in subsequent tasks, but it does not
necessarily increase it.

To deepen our understanding, we investigated workers’ lexi-
cal richness in reference to food, that is, the number of unique
food-related words used. Even if workers provide an abun-
dance of food-related words, there can be less diversity, if,
for example, workers repeat generic references to food. The
intertask sub-experiments from both Experiments 1 and 2
showed that workers from the food treatments had greater lex-
ical richness, in reference to food, than their counterparts (as
much as 20% more) (Figure 5B). This is particularly notewor-
thy for the intertask sub-experiment in Experiment 1, because

10 Frequencies of food references within a treatment were calculated
as an average across workers, and modeled as normally distributed.

there, workers from the food treatment made fewer total ref-
erences to food. Thus, although prior task exposure does not
necessarily increase the propensity to identify content in later
tasks, it does appear to activate vocabulary pertaining to con-
tent in the prior tasks.

To test the significance of the difference in sizes of food lex-
icons, we created a null model for each experiment, by as-
suming that responses for both treatments were in fact drawn
from the same distribution. This was accomplished by pool-
ing responses for both treatments of a given experiment, then
drawing two bootstrap samples of 119 responses and calcu-
lating the difference in the size of their food lexicons. We
repeated this 1000 times and took the 2.5th and 97.5th per-
centiles as the critical values for the rejection of the null hy-
pothesis (the latter shown by stars in Figure 5B).

The above observations regarding lexical richness suggest
that initial tasks might influence workers to use more refined
or specialized words, when referring to aspects of content that
had been present in the initial tasks. To test this directly, we
used the hypernym and hyponym relations in WordNet to op-
erationalize the notion of word specialization. Within each
sub-experiment, we determined the relative specificity of the
food-words, between the treatments using the following equa-
tion:

S (P,Q) =
∑

w∈P
∑

v∈Q
(
1[w>v] − 1[v>w]

)∑
w∈P

∑
v∈Q

(
1[w>v] + 1[v>w]

) , (8)

where P and Q are sets of words associated to different ex-
perimental treatments, and 1[w>v] evaluates to 1 if word w is
more specific than (i.e. is a hyponym of) word v. The relative
specificity lies within [−1, 1]; we report it as a signed percent-
age. In computing this quantity between two treatments, we
first computed the relative specificity for the treatments sep-
arately for each test task, and averaged the results obtained
across the five test tasks. To establish significance, we again
used a null model, based on bootstrapping.

In all sub-experiments, workers from the food treatment used
more specialized words, in reference to food (about 15%
more; p < 0.05) (Figure 5C). Except in the case of the fram-
ing treatment of Experiment 1, these between-treatment dif-
ferences in word specialization were significant (p < 0.05).

allrecipes.com


It is interesting that such substantial increases in both the lex-
ical richness and specialization of food-related words held
for the intertask sub-experiment of Experiment 1, where, as
mentioned, we observed that food-exposed workers made
fewer references to food overall. These observations point
to countervailing factors: one factor tending to activate the
more specialized and less common food-related words (yield-
ing greater lexical richness and specialization), and the other
tending to suppress certain, presumably more common and
generic words (yielding fewer food-related words in total).

This hypothesis is corroborated when we look at those words
whose frequencies changed the most from one treatment to
another (Table 2). The word “food”, which is the most
generic possible food-related word, was always suppressed
among food-exposed workers, along with other very generic
food references being suppressed too, such as “meal” and
“dinner”. In fact, for all experiments, “food” was the most
suppressed word. Meanwhile, the most activated food-related
words, among food-exposed workers, tended to refer to spe-
cific foods, like “apple”, “cheese”, and “bread”.

DISCUSSION
Our results show that intertask effects exist, are very strong,
and are on par with the effect of an explicit statement of a
task’s purpose reinforced by requiring the worker to repeat
that purpose. This very surprising result immediately raises
follow-on questions for future work: what are the psycho-
logical mechanisms at play? How are other kinds of tasks
(i.e. other than image labeling) impacted by intertask effects?
How can intertask effects best be used to produce optimal task
design? We expect these questions will be fruitfully explored
in future work.

While our setup does not allow us to tell what psycholog-
ical mechanism(s) are responsible for intertask effects, we
suspect that priming is involved. As mentioned, we believe
microtasks create conditions conducive to priming, and this
is what first lead us to suspect intertask effects might ex-
ist. Priming occurs when a prior stimulus causes a person
to respond to a subsequent task with increased speed or accu-
racy, or with the ability to recognize briefer or noisier stimuli
[36, 21, 18]. In the case of image labeling, pre-activation of
vocabulary relating to prior tasks, through a priming mech-
anism, could lead to more rapid retrieval of those words in
subsequent tasks. A worker may be more likely to enter those
words which enter her mind first, so priming could lead to
certain words being preferred. As the worker completes many
tasks with a common theme, the worker’s vocabulary relating
to that theme will be increasingly activated, enabling more
specialized words to be retrieved quickly, and therefore to be
submitted as responses.

However, as we alluded to above, there appears to be coun-
tervailing factors: while richness and specialization of food-
related words always increased (or were not significantly
changed) among workers exposed to food in initial tasks, the
total number of references to food significantly decreased in
one case. Here we suspect negative priming to be at play.
Negative priming occurs when, after exposure to a stimulus
considered to be non-salient, subsequent recognition of the

stimulus is inhibited [29]. In the case of our image label-
ing tasks, repeated exposure to images depicting food might
cause the worker to stop regarding the basic presence of food
as salient, and to direct her attention instead to the features
that are specific to the food in a given image. This would
explain the suppression of very generic references to food
observed in Table 2. The balance between the inhibition of
generic food-related words, and the activation of specialized
ones, could lead to more or less food references overall, so
this dual priming mechanism is consistent with our observa-
tions. Direct experimentation is needed to determine whether
priming mechanisms, positive or negative, can explain inter-
task effects.

Prior to this study, it was not realized that earlier microtasks
could have such strong effects on later ones. But our findings
show this is an important design factor that should be consid-
ered by anyone using microtask platforms. The commonly
employed practice of randomizing task ordering probably in-
troduces a significant amount of noise due to intertask effects:
even chains of two or three similar tasks, which will not be
reliably eliminated in random permutations, could lead to the
levels of influence we observed in our experiments. Prefer-
ably, a deeper understanding of intertask effects might allow
them to be properly controlled.

But perhaps more importantly, our findings show that inter-
task effects might be leveraged obtain greater quality and re-
producibility in crowdsourcing. A consistent goal in human
computation is the elicitation of expert-level judgments from
non-expert workers [24]. This has been achieved in some
applications [32, 30, 35]. The distinction between experts
and novices is partly attributable to specialized knowledge
and heuristics. But experts also simplify tasks by more effi-
ciently directing their focus toward salient features [20]. Us-
ing strategic task exposure during training, it might be possi-
ble to guide workers’ focus and salience attribution, enabling
expert-level judgment in a wider variety of crowdsourced ap-
plications.

Intertask effects are a new basic discovery in the quest to de-
sign reliable and reproducible tasks for human computation.
We anticipate future work will yield techniques to control in-
tertask effects, to reduce unwanted bias, and to tune the focus,
diversity, and specificity of worker responses.
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