
Lecture 15: Learning Bayesian networks

Today we still assume directed models, complete data� Priors; Dirichlet priors� Bias-variance trade-off� Structure learning

– Constraint-based approaches

– Score-based approaches
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Recall: MLE and Bayesian parameter estimation

� In MLE we make parameter guesses using data only� This means that we compute sufficient statistics of the data

(e.g., counts)� In Bayes nets, the probability distribution factorizes so we can

compute the CPDs locally� The Bayesian approach phrases parameter learning as the

problem of inferring the next data item� This will allow us to work in assumptions we may have about the

distributions
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Example: Binomial data

� Suppose we observe 1 toss, ����� �
. What would the MLE be?� In the Bayesian approach,
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Example (continued)� Likewise, we have:
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� By normalizing we get:
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� It is as if we had our original data, plus two more tosses! (one

heads, one tails)� Suppose now that we get another toss, �k&l� m . What is���on a � ����� � ���'&p� mc� ?
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Prior knowledge

� The prior incorporates prior knowledge or beliefs about the

parameters� As data is gathered, these beliefs do not play a significant role

anymore� More specifically, if the prior is well-behaved (does not assign 0

probability to feasible parameter values), MLE and Bayesian

approach both give consistent estimators, so they converge in

the limit to the same answer� But the MLE and Bayesian predictions typically differ after fixed

amounts of data. But in the short run, the prior can impact the

speed of learning!
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Multinomial disttribution

� Suppose that instead of a coin toss, we have a discrete random

variable with qsr t possible values. We want to learn

parameters 
 ��������� 
7u .� The number of times each outcome is observed, vw����������v u
represent sufficient statistics, and the likelihood function is:
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� The MLE is, as expected,

y ~ [ � ~� � b�������b � u��Q��� [ j ���������
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Dirichlet priors

� A Dirichlet prior with parameters � � ��������� u is defined as:

� ��
 �9� � 
7� ��� �~
� Then the posterior will have the same form, with parameter

� ~'� v ~ :
� ��
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� We can compute the prediction of a new event in closed form:

� � ���H�	��� q ��� ��� � u � v u� � � ~ � v ~ �
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Conjugate families

� The property that the posterior distribution follows the same

parametric form as the prior is called conjugacy

E.g. the Dirichlet prior is a conjugate family for the multinomial

likelihood� Conjugate families are useful because:

– They can be represented in closed form

– Often we can do on-line, incremental updates to the

parameters as data is gathered

– Often there is a closed-form solution for the prediction

problem
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Prior knowledge and Dirichlet priors

� The parameters � ~ can be thought of a “imaginary counts” from

prior experience� The equivalent sample size is ��� � .�.�. � � u� The magnitude of the equivalent sample size indicates how

confident we are in your priors� The larger the equivalent sample size, the more real data items

it will take to wash out the effect of the prior knowledge
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Bayesian prediction

� Given Dirichlet priors that are independent for each CPD, and

given complete data, the posterior for each value of a variable

will be Dirichlet with parameters � ��n ~ � q � �D�?���� ¢¡¤£ ��n ~ ��� .� To choose the prior, � ��n ~ � q'� �D�?���� ¢¡¤£ ��n ~ ��� , we can use an

initial parameter vector 
 ) , plus an equivalent sample size� This allows the CPDs to be updated incrementally as data is

collected
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Bias-variance trade-off

� Bias� Variance
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Structure learning problem

� Suppose we have data � sampled from some network ¥§¦ , with

associated joint distribution � ¦ . Can we recover ¥¨¦ ?
– If we have enough data, we can compute � ¦ accurately

– But as we have seen before, minimal I-maps are not unique.

So in general we cannot recover ¥©¦ exactly� Why should we still strive for perfection?

– If we have too few edges, then we cannot recover � ¦ , no

matter what we do!

We introduce spurious dependencies

– If we have too many edges, the network is too big

Additionally, we cannot estimate the parameters accurately
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Coin tossing example

Suppose we have two coins n � and n & that are tossed

independently. We have a dataset with 100 instances of the

experiment:� 30 head-head instances� 20 head-tail instances� 25 tail-head instances� 25 tail-tail instances

Based on the data, the tosses seem weakly correlated, so the

learned network could have an edge between n � and n &
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Coin tossing example (continued)

If we wanted to estimate the parameters for the network n � n & , we

get: � �on �*� � �9� ª !# !«!
� �on &(� � �N� ª !# !«!

Assume that we build the net n �*¬ n & . Our estimates are:

� ��n &(� � �=n ��� � �9� 0 !
ª ! � ! �®­ � ��n &(� � �=n �*� mc�_� t ªª !�¯ ! � ª

The first conditional probability is not accurate! This is due to the

fact that we split the data into more partitions, so less data is

available in each partition
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Approaches: Constraint-based search

Perform statistical tests to determine conditional independence

relations in the data; then search for a network respecting these

independencies� Very intuitive, in the spirit of Bayes nets� Allows for efficient search, decoupled from the tests� But very sensitive to the tests! If some test fails, we get a wrong

network
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Score-based search

Define a score metric to measure how well the independencies in

the structure match the data; search for a network maximizing the

score� Not sensitive to individual failures� Can make compromises between the extent of dependencies

and the cost of adding an edge� But make a harder search problem

We focus on score-based methods
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Score-based methods

� Suppose we can define a metric for how well a Bayes net

represents a given set of data� Then we can approach structure learning as a search problem:

– Start with an initial network (e.g. random, tree, based on

prior knowledge etc.)

– Apply operators to change the network: add, delete or

reverse arcs
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current network

arc reversals

arc deletions

arc additions
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Greedy (hill-climbing) search

Very simple idea: always choose the operator that produces the

network with the best score.

value

states

global maximum

local maximum

� Local maxima� Plateaux� Ridges: a set of points might appear like a local maximum

The search space for Bayes net learning has many local maxima
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Improvements on greedy search

� Greedily add arcs, then greedily remove arcs

Works pretty well in some domains� Tabu-search: keep a list of the q most visited structures, and

always look for the best move not generating a structure on the

list

Avoids flat surfaces� Random restarts: do greedy search repeatedly, starting with

different initial networks. Keep the best network seen.

Very effective in the Bayes net domain!� Simulated annealing: do not always move to the best network;

allow even moves that can lead to a lower scoring net
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Simulated Annealing

Main idea: escape local maxima by allowing some apparently

“bad” moves. But gradually decrease their size and frequency

1. Pick a start state s

2. Pick a temperature parameter T, which will control the

probability of a random move

3. Repeat:

(a) Select a random successor s’ of the current state

(b) Compute °�± � ² �3³M´k� � £�µ �·¶ ² �3³5´k� � £ �
(c) If °�± r ¡�¸¹�º�»£�¸½¼¾³ , , move to s’

(d) Else move to s’ with probability
�¢¿�ÀÁ

(e) Change the temperature according to a schedule
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Properties of Simulated Annealing

� If m is decreased slowly enough, it is guaranteed to reach the

best solution� But it will take an infinite number of moves!� When m is high, the algorithm is in an exploratory phase (all

moves have about the same value)� When m is low, the algorithm is in an exploitation phase (the

greedy moves are most likely)
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Scoring networks

� The search process requires scoring many networks!� But the application of an operator only changes the local

structure of the network� We need scoring metrics that can be decomposed into scores

for each family

Then we can compute a change in score easily
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