
Lecture 13: Markov Chain Monte Carlo. Gibbs sampling

� Gibbs sampling� Markov chains
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Recall: Approximate inference using samples

� Main idea: we generate samples from our Bayes net, then

compute probabilities using (weighted) counts)� But we may need a lot of work to get enough samples (e.g. if

the CPDs are very extreme)� Rejection sampling and likelihood weighting are also specific to

directed models
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Recall: Forward sampling
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� Each sample is constructed from scratch!� We saw two alternatives for incorporating the evidence

– Throw away samples that are inconsistent with it

– Force the evidence variables, but then weigh the samples� In both cases, after a sample is constructed, we start a new one

from scratch
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A different idea
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� Suppose we want to compute
�������	��
 ��


� We generate one sample, with the given evidence variables

instantiated correctly� Then we keep changing it!� If we are careful, we will get samples from the correct

distribution
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Gibbs sampling

1. Initialization� Set evidence variables ��� , to the observed values ���� Set all other variables to random values (e.g. by forward

sampling, uniform sampling...)

This gives us a sample ����������������� .

2. Repeat (as much as wanted)� Pick a non-evidence variable ��� uniformly randomly� Sample �� � from
��� � � � �!������������� ��" ����� �$# ��������������� 
 .� Keep all other values: �% � 
 �&�'�)(+*-,
 .

� The new sample is �% � ������������ �
3. Alternatively, you can march through the variables in some

predefined order
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Why Gibbs works in Bayes nets
� The key step is sampling according to��� � � � �!�/����������� ��" �0��� �1# �2������������� 
 . How do we compute this?� In Bayes nets, we know that a variable is conditionally

independent of all other given its Markov blanket (parents,

children, spouses)

��� � � � �!�/����������� ��" �0��� �1# �2������������� 
3
 ��� � � �MarkovBlanket
� � � 
�


� So we need to sample from
��� ��� �MarkovBlanket

� ��� 
4
� Let 56�'�7* 
 8 ���������:9 be the children of � � . You will show (next
homework) that:

;=<?> �:@MarkoxBlanket
<BA �)CDC�E ;F<1> �:@ Parents

<?A �)CDC
GH

�JIK�
;=<BL � @ Parents

<1M � CDC
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Example
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1. Generate a first sample: N 
 O � � 
 O � ��
 O �JP 
 8
.

2. Pick
�

, sample it from
������� N 
 O �:P 
 8 � � 
 OQ


. Suppose

we get
� 
 8

.

3. Our new sample is N 
 O � � 
 8 � ��
 O �JP 
 8
4. ....
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Analyzing Gibbs sampling

� Consider the variables �-�����R��������� . Each possible assignment

of values to these variables is a state of the world, ST�K�2��������������U .� In Gibbs sampling, we start from a given state
V 
 ST� � ����������� � U . Based on this, we generate a new state,
V  
 ST�  � �����������  � U .� V  depends only on V !� There is a well-defined probability of going from V to V  .

Gibbs sampling constructs a Markov chain over the Bayes net
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Markov chains

A Markov chain is defined by:� A set of states
�

� A starting distribution over the set of states WYX � V 
3
 ��� V X 
 V 
 .
We often put these in a vector Z\[� A stationary transition probability W^]_]a` 
 ��� V/b # � 
 V  � V�b 
 V 
 .
For convenience, we often put these in a a c dec matrix P

V X=f V �gf h�h�hif V b f V b # �jf �����
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Steady-state (stationary) distribution
� Where will the chain be in 1 step?

Wlk � 
 WlkX � m f W^� 
 � WlX
� In two steps?

WYn 
 � W � 
 � n W X
� In

�
steps?

W b 
 � W b " � 
 � b WlX
A stationary distribution o is a distribution left invariant by the

chain:

o 
 � o
� Note that some chains can have more than one stationary

distribution!
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Detailed balance

� Consider the stationary distribution:

o � V  
p
 ] o � V 
_��� V � V  


This can be viewed as a “flow” property: the flow out of V  has to

be equal to the flow coming into V  from all states� One way to ensure this is to make flow equal between any pair

of states:

o � V 
a��� V � V  
p
 o � V  
a��� V  � V 


This gives us a sufficient condition for stationarity, called

detailed balance (why)� A Markov chain with this property is called reversible
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Monte Carlo Markov Chain (MCMC)

� Suppose we want to sample data from some distribution� We will set up a Markov chain which has the desired distribution

as its stationary distribution!� For this we would like the chain to have a unique stationary

distribution, so that we can get samples from it

regardless of the starting distribution

12



Ergodicity

� An ergodic Markov chain is one in which any state is reachable

from any other state, and there are no strictly periodic cycles� In such a chain, there is a unique stationary distribution o ,

which can be obtained as:

o 
 qsrutb�vxw W b

This is called equilibrium distribution� Note that the chain reaches the equilibrium distribution

regardless of W�X
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Sampling the equilibrium distribution

� We can sample o just by running the chain a long time:

– Set V X 
 .
for some arbitrary

.
– For

�p
 8 ���������zy , if V b 
 V , sample a value V  for V b # �
based on

��� V � V  

– Return V�{ .

If y is large enough, this will be a sample from o� In practice, you’d like to have a rapidly mixing chain, i.e. one

that reaches the equilibrium quickly
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Implementation issues

� The initial samples are influenced by the starting distribution, so

they need to be thrown away. This is called the burn-in stage� Because burn-it can take a while, we’d like to draw several

samples from the same chain!� However, if we take samples
�
,
��| 8

,
�!| }

..., they will be highly

correlated� Usually we wait for burn-in, then take every c ��~ sample, for

some c sufficiently large. This will ensure that the samples are

(for all practical purposes) uncorrelated

15

Gibbs sampling as MCMC

� We have a set of random variables � 
 � ��������������� , with

evidence variables � 
 �
. We want to sample from

W � � m � ���&
 .� Let � � be the variable to be sampled, currently set to � � , and ����
be the values for all other variables in � m � m � � � �� The transition probability for the chain is:

��� V � V  
p
 W � �� � � �� � � ��
� Obviously the chain is ergodic� We want to show that W � � m � ���&
 is the stationary distribution.
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Gibbs satisfies detailed balance

o � V 
a��� V � V  
 
 W � � m � ���&
 W � �  � � �� � � �&


 W � ����� ���� ���&
 W � ��� � ���� � �&


 W � � � � �� � � �&
 W � �� � ���&
 W � �  � � �� � � ��
 (by chain rule)

 W � � � � �� � � �&
 W � �  � �K�� � ���&
 (backwards chain rule)

 ��� V  � V 
 o � V 
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