Lecture 13: Markov Chain Monte Carlo. Gibbs sampling

® Gibbs sampling
e Markov chains

Recall: Approximate inference using samples

e Main idea: we generate samples from our Bayes net, then
compute probabilities using (weighted) counts)

e But we may need a lot of work to get enough samples (e.g. if
the CPDs are very extreme)

e Rejection sampling and likelihood weighting are also specific to

directed models




Recall: Forward sampling
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e Each sample is constructed from scratch!
e \We saw two alternatives for incorporating the evidence
— Throw away samples that are inconsistent with it
— Force the evidence variables, but then weigh the samples
® |n both cases, after a sample is constructed, we start a new one

from scratch

A different idea
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e Suppose we want to compute P(R|S = t)
e \We generate one sample, with the given evidence variables
instantiated correctly

e Then we keep changing it!

e If we are careful, we will get samples from the correct

distribution




Gibbs sampling

1. Initialization
e Set evidence variables Z;, to the observed values z;
e Set all other variables to random values (e.g. by forward
sampling, uniform sampling...)
This gives us a sample 1, ..., Tn.
2. Repeat (as much as wanted)
e Pick a non-evidence variable X; uniformly randomly
e Sample z; from P(X;|T1, ..., Ti—1,Tit1, -, Tn).
e Keep all other values: z’; = x;,Vj # i
e The new sampleis z}, ..., z,
3. Alternatively, you can march through the variables in some

predefined order
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Why Gibbs works in Bayes nets

e The key step is sampling according to
P(Xi|z1,...,%i-1,Zit1,--.,Tn). HOow do we compute this?

e |n Bayes nets, we know that a variable is conditionally
independent of all other given its Markov blanket (parents,
children, spouses)

P(Xi|$1, ey Li—1y Lig Ly e e ,xn) = P(X¢|MarkovBIanket(Xi)

® So we need to sample from P(X;|MarkovBlanket(X;))
® LetY;,5 =1,...,k be the children of X;. You will show (next
homework) that:
k

P(x;|MarkoxBlanket(X;)) o< P(x;|Parents(X H (yj |Parents(Y))
J=1




Example
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Generate a firstsample: C =0, R =0,5S =0, W = 1.

Pick R, sample it from P(R|C' = 0,W = 1,5 = 0). Suppose
we get R = 1.

OurnewsampleisC =0,R=1,S=0,W =1

Analyzing Gibbs sampling

Consider the variables X1, ..., X,. Each possible assignhment
of values to these variables is a state of the world, (z1,...,Zx).
In Gibbs sampling, we start from a given state
s = {(z1,...,Tn). Based on this, we generate a new state,

/

s =(z1,...,2,).

s’ depends only on s!

There is a well-defined probability of going from s to s’.

Gibbs sampling constructs a Markov chain over the Bayes net




Markov chains

A Markov chain is defined by:
e A set of states S
e A starting distribution over the set of states po(s) = P(so = s).
We often put these in a vector po
e A stationary transition probability p,or = P(st+1 = s'|st = s).
For convenience, we often put these ina an X n matrix P

So—=> 81— >SSt 7> St4+1 7 ...
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Steady-state (stationary) distribution

e Where will the chain be in 1 step?
T T
p1 =po P — p1 = Ppo
® In two steps?
p2 = Pp1 = P’po
® |n ¢ steps?
pt = Ppi—1 = P'po

A stationary distribution 7 is a distribution left invariant by the

chain:

™= Pm

e Note that some chains can have more than one stationary
distribution!
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Detailed balance

Consider the stationary distribution:

This can be viewed as a “flow” property: the flow out of s’ has to
be equal to the flow coming into s’ from all states
One way to ensure this is to make flow equal between any pair

of states:
7(s)P(s,s') = w(s')P(s', s)

This gives us a sufficient condition for stationarity, called

detailed balance (why)

A Markov chain with this property is called reversible
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Monte Carlo Markov Chain (MCMC)

Suppose we want to sample data from some distribution

We will set up a Markov chain which has the desired distribution

as its stationary distribution!
For this we would like the chain to have a unique stationary
distribution, so that we can get samples from it

regardless of the starting distribution
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Ergodicity

e An ergodic Markov chain is one in which any state is reachable
from any other state, and there are no strictly periodic cycles

® In such a chain, there is a unique stationary distribution 7,
which can be obtained as:

T = lim p¢
t—o00

This is called equilibrium distribution

e Note that the chain reaches the equilibrium distribution

regardless of pg
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Sampling the equilibrium distribution

e \We can sample 7 just by running the chain a long time:

— Set sg = 1 for some arbitrary 2

— Fort=1,...,M,if sy = s, sample a value s’ for s;11
based on P(s,s’)
— Return sys.

If M is large enough, this will be a sample from 7

e In practice, you'd like to have a rapidly mixing chain, i.e. one

that reaches the equilibrium quickly
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Implementation issues

The initial samples are influenced by the starting distribution, so

they need to be thrown away. This is called the burn-in stage

Because burn-it can take a while, we'd like to draw several
samples from the same chain!

However, if we take samples ¢, t + 1, t 4+ 2..., they will be highly
correlated

Usually we wait for burn-in, then take every nth sample, for
some n sufficiently large. This will ensure that the samples are

(for all practical purposes) uncorrelated
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Gibbs sampling as MCMC

We have a set of random variables X = {z1 ...z, }, with
evidence variables Z = z. We want to sample from

(X —Z|z).

Let X; be the variable to be sampled, currently set to x;, and x;
be the values for all other variables in X — 7 — { X}

The transition probability for the chain is: P(s, s’) = p(z;|Xi, )
Obviously the chain is ergodic

We want to show that p(X — Z|z) is the stationary distribution.

16




Gibbs satisfies detailed balance

n(s)P(s,s") = p(X—Z|z)p(z;|%:,z)
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