Lecture 7: Exact inference: Variable Elimination

e Given a Bayes net, what kinds of questions can we ask?
e Complexity of inference

e Variable elimination algorithm
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Queries

Graphical models (directed or undirected) can answer questions
about the underlying probability distribution:
e Conditional or unconditional probability queries:

— What is the probability of a given value assignment for a
subset of variables Y ?

— What is the probability of different value assignments for
query variables Y given evidence about variables Z? I.e.
compute P(Y'|Z = z2)

e Maximum a posteriori (MAP) queries: given evidence Z = z,
find the most likely assignment of values to the query variables

Y:

MAP(Y|Z =z) = argm;xxP(Y =y|Z = 2)
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Examples of MAP queries

® In speech recognition, given a speech signal, one can attempt
to reconstruct the most likely sequence of words that could have
generated the signal.

e In classification, given the training data and a new example, we
want to determine the most probable class label of the new

example.

Complexity of inference

e Given a Bayesian network and a random variable X, deciding
whether P(X = x) > 0 is NP-hard.

e This implies that there is no general inference procedure that
will work efficiently for all network configurations

e But for particular families of networks, inference can be done

efficiently.




Example

B

p(B|C=t)="?

Naive solution

E B
. /§ )
p(B[C=t)=?
C
p(B,C =1t) = Zp(A:a,R:r,E:e,B,C:t)

= " p(rle)p(e)p(ale, Bp(C = t|a)

a,r,e

and same for computing p(C' = t)




A better solution

Let's re-arrange the sums slighty:

p(B,C=t) = > p(rle)p(e)p(ale, B)p(C = t|a)

a,r,e

= 3" pe)p(ale, B)p(C = tla) 3 plrle

Notice that ) p(r|e) = 1! But let's ignore that for the moment.
We can call ) _p(r|e) = mg(e) (because it was obtained by
summing out over R and only depends on e).

Now we have:
p(B,C =1) ZZp p(ale, B)p(C = tla)mrg(e)

and we can pick another variable (A or E) to do the same again.
Instead of O(2™) factors, we have to sum over O(n - 2¥) factors

7

Basic idea of variable elimination

We impose an ordering over the variables, with the query
variable coming last

We maintain a list of “factors”, which depend on given variables
We sum over the variables in the order in which they appear in
the list

We memorize the result of intermediate computations

This is a kind of dynamic programming




A bit of notation

e Let X; an evidence variable with observed value z;

e | et the evidence potential be an indicator function:

5(:1;2,:1?@) = 1 iff Xi = a?z
This way, we can turn conditionals into sums as well, e.g.

(rlE=1)= Zp

e This is convenient for notation, but in practice we would take

“slices” through the probability tables instead.
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Variable elimination algorithm

1. Pick a variable ordering with Y™ at the end of the list

2. Initialize the active factor list:

e with the CPDs in a Bayes net
e with the potentials in a Markov random field
3. Introduce the evidence by adding to the active factor list the
evidence potentials (e, €), for all the variables in F
4. Fort=1ton
(a) Take the next variable X; from the ordering.
(b) Take all the factors that have X; as an argument off the
active factor list, and multiply them, then sum over all values
of X, creating a new factor mx,

(c) Put mx, on the active factor list
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Example

E B
:‘ p(B|C=t)="?
@

1. Pick a variable ordering: R, E, C, A, B.

. Initialize the active factor list and introduce the evidence:
List: p(R|E), p(E), p(B), p(A|E, B), p(C|A),6(C, t)

. Eliminate R: take p(R|FE) off the list, compute

mg(e) = 3_, p(rle).

List: p(E), p(B), p(A|E, B), p(C|A),3(C, t), m(E)
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Example (continued)

. Eliminate E: mg (A, B) = 3. p(e)p(ale, b)mr(e)
List: p(B), p(C|A),d(C,t), me(A, B)
. Eliminate C: mo(a) = 3, p(c|a)s(C, t)

List: p(B), me(A, B), mc(A)

. Eliminate A: ma(b) = 3. mg(a, bymc(a)

List: p(B), ma(B)

. Eliminate B: mp = Y, p(b)ma(b)

List: mp

This is the answer we needed!
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Complexity of variable elimination

We need at most O(n) multiplications to create one entry in a
factor (where n is the total number of variables)

If k£ is the maximum number of values that a variable can take, a
factor depending on k variables will have O(k™) entries

So itis important to have small factors!

But the size of the factors depends on the ordering of the
variables!
Choosing an optimal ordering is NP-complete (more on this

later)
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