
Lecture 6: Markov random fields

� Structure of a Markov random field� Potentials� Relationship to directed models
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Undirected graphical models

� So far we have used directed graphs as the underlying structure

of a Bayes net� Why not use undirected graphs as well?

E.g., variables might not be in a “causality” relation, but they can

still be correlated, like the pixels in a neighborhood in an image� An undirected graph over a set of random variables�������������	��
�
is called a undirected graphical model or

Markov random field or Markov network
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Conditional independence

� We need to be able to specify, for a given graph, if
�����������

, for

any disjoint subsets of nodes
�

,
�

,
�

.� In directed graphs, we did this using the Bayes Ball algorithm� In undirected graphs, independence can be established by a

simple notion of separation: if every path from a node in
�

to a

node in
�

goes through a node in
�

, we conclude that�����������
� Hence, independence can be established by removing the

nodes in the conditioning set then doing reachability on the

remaining graph.� What is the Markov blanket of a node in an undirected model?
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How expressive are undirected models?
� Example 1: an undirected graph

W

X

Y

Z

Can we find a directed graph that satisfies the same

independence relations?� Example 2: our friend the v-structure

Y

X Z

Can we find an undirected graph that satisfies the same

independence relations?
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Local parameterization

� In directed models, we had local probability models (CPDs)

attached to every node, giving the conditional probability of the

corresponding random variable given its parents� Can we do something similar in undirected models?� More specifically, we want the joint probability distribution to

factorize over the graph� This means that the joint can be written as a product of “local”

factors, which depend on subsets of the variables.� Unfortunately, conditional probabilities are not adequate for this

case...
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What about local marginal parameterizations?

� Suppose we express the joint as:

��� � � �������	� 
����
�

��� � � � Neighbors � � � � �

� It is local and has a nice interpretation� So let’s consider using it for an example:

ZX Y
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Local parameterizations: Try 2

� Consider a pair of nodes
�

and
�

that are not directly

connected through an arc� According to the conditional independence interpretation,
�

and
�

are independent given all the other nodes in the graph

�����!��� � ���������"��� ��
�$#%� # �
� Hence, there must be a factorization in which they do not

appear in the same factor� This suggests that we should define factors on cliques

Recall that a clique is a fully connected subset of nodes (i.e.,

there is an arc between every pair of nodes)
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Example: what are the cliques?

D

A B

C
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Clique potentials
� We will represent the joint distribution as a

product of clique potentials:

��� ���&������� ��
 ��� '�
cliques (

) ( �+* ( �

where * ( are values assignments for the variables that

participate in the clique and
�

is a normalization constant, to

make probabilities sum to 1:
� �

, cliques (
) ( �+* ( �

� Without loss of generality, we can consider only maximal cliques

These are the cliques that cannot be extended with other nodes

without losing the fully connected property
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Example

D

A B

C
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Normalizing constant

� The normalizing constant
�

can be ugly to compute, since we

have to sum over all possible assignments of values to variables� Depending on the shape of the graph, the summation could be

done efficiently� However, if we are interested in conditional probabilities, we do

not even need to compute it! (why?)
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Interpretation of clique potentials

� Potentials are NOT probabilities (conditional or marginal)� But they do have a natural interpretation as “agreement” or

“energy”� Example: spin glass model
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A real example: Texture synthesis

� You are given a small patch of texture and want to produce a

“similar” larger patch� We can define a Markov random field over pixels, e.g:

� The “potentials” favor certain configurations of pixels over others� We get the texture by doing inference (and sometimes learning)

for this model
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Boltzmann distribution

� The fact that potentials must be non-negative is annoying� We can escape from that by using the exponential function,

which is non-negative:

) ( �+* ( ��� -/.103234 , 265
� Now we have to define 7 ( �+* ( �

, which can be anything!� Moreover, the joint also has a nice form:

��� � �8� '�
(

- .103294 , 2:5 � '� - .1; 2 03284 , 2:5 � '� - .10<4>=?5

where 7 � � �3� @ ( 7 ( �+* ( �
is the “free energy”� Hence, � is represented using a Boltzmann distribution
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Ising Model
� Nodes are arranged in a regular fashion and connected only to

geometric neighbors.� E.g., Spin glass in 2D:

� Energy has the form”

7 � � �3�
�BADC

E �FC�G��HGICKJ � L �HG��
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Important result

� Consider the family of probability distributions that respect all

the conditional independencies implied by an undirected graphM
� Consider the family of probability distributions defined by

ranging over all possible maximal clique potential functions.� The Hammersley-Clifford theorem shows that these two families

are identical.� This is a similar result to the “soundness and completeness” of

d-separation which we discussed for directed models.
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