Lecture 4: Independence maps. Factorization

e Independence maps
o A more formal definition of Bayes nets

e Factorization theorem
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I-Maps

A directed acyclic graph (DAG) G whose nodes represent random

variables X1,..., X, isan I-map (independence map) of a

distribution P if P satisfies the independence assumptions:
X; 1l Nondescendents(X;)|Parents(X;),Vi=1,...n

Example: Consider all possible DAG structures over 2 variables.

Which graph is an I-map for the following distribution?
X Y P(X,Y)

x=0 y=0 0.08
x=0 y=1 0.32
x=1 y=0 0.32
x=1 y=1 0.28




Factorization

Let G be a DAG over variables X1, ..., X,,. We say that a

distribution P factorizes according to G if P can be expressed as
a product:

n

P(X1,...,Xn) = H P(X;|Parents(X;)

i=1
The individual factors P(X;|Parents(X;)) are called
local probabilistic models or

conditional probability distributions(CPD).

Bayesian network definition

A Bayesian network is a DAG G over variables X1, ..., X,
together with a distribution P that factorizes over GG. P is specified

as the set of conditional probability distributions associated with G's

nodes.
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Factorization theorem

G is an I-map of P if and only if P factorizes according to GG
P(X1,...,Xn) = H P(X;|Parents(X;))
=1

Proof: One direction: by the chain rule,

P(X1,...,Xn) =[], P(Xi|X1,...,Xi—1). Without loss of
generality, we can order the variables X; according to GG. From this
assumption, Parents(X;) C {X1,..., X;—1}. This means that
{X1,...,Xi—1} = Parents(X;) U Z, where

Z C Nondescendents(X;). Since G is an I-map, we have

X; Il Nondescendents(X;)|Parents(X;), so:

P(X;|X1,...,Xi—1) = P(X;|Z, Parents(X;)) = P(X;|Parents(X;))

and the conclusion follows.
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Factorization example
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The factorization theorem allows us to represent P(C, A, R, E, B)
as:

P(C,A,R,E,B) = P(B)P(E)P(R|E)P(A|E, B)P(C’|A)
instead of:

P(C, A, R, E,B) = P(B)P(E|B)P(R|E, B)P(A|E, B,R)P(C|A, E, F




Complexity of factorized representations

e If |Parents(X;)| < k, Vi, and we have binary variables, then
every conditional probability distribution will require < 2k
numbers to specify

e The whole joint distribution can then be specified with < n - ok
numbers, instead of 2"

e The savings are big if the graph is sparse (k < n).

Minimal I-maps

e The fact that a DAG G is an I-map for P might not be very
useful.
E.g. Complete DAGs (where all arcs that do not create a cycle
are present) are I-maps for any distribution (because they do
not imply any independencies).

e A DAG G is minimal I-map of P if G:
1. Gis an I-map of P
2. IfG' C G then G’ is not an |I-map for P




Constructing minimal I-maps

The factorization theorem suggests an algorithm:
1. Fix an ordering of the variables: X1,..., X,
2. For each X, select Parents(Xz-) to be the minimal subset of
{X1,...,Xi—1} such that
Xl ({X1,...,Xi—1} — Parents(X;)) |Parents(X;).

This will yield a minimal I-map
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Non-uniqueness of the minimal I-map

e Unfortunately, a distribution can have many minimal I-maps,
depending on the variable ordering we choose!
e The initial choice of variable ordering can have a big impact on

the complexity of the minimal I-map:

(e) (B} EB
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Ordering: £, B,A,R,C Ordering:C, R, A, E, B

e A good heuristic is to use causality in order to generate an

Example:

ordering.
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