Lecture 3: Belief networks. Bayes ball

e An example
e Conditional independencies implied by a belief network

e The Bayes ball algorithm

Recall from last time

e Conditional independence is an important tool for making
probability distributions tractable

e Two random variables X and Z are conditionally independent
given Y if, once we know Y, knowing Z does not reduce our
uncertainty in the value of X, and vice versa.

e Bayesian networks are a graphical representation of conditional

independence using directed acyclic graphs (DAGS)




Example: A Belief (Bayesian) Network
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e The nodes represent random variables
e The arcs represent “influences”
e At each node, we have a conditional probability table (CPD) for the

corresponding variable given its parents

3

Using a Bayes net for reasoning (1)

Computing any entry in the joint probability table is easy:
p(B,~E,A,C,—R) = p(B)p(—E)p(A|B, ~E)p(C|A)p(~R|inotE)
= 0.01-0.995-0.8-0.7-0.9999 ~ 0.0056

What is the probability that a neighbor calls?

p(C=1)= Z p(C =1,e,b,7,a) =
e,b,r,a
What is the probability of a call in case of a burglary?
p(C=1,B=1) Ze’r’ap(Czl,le,e,r,a)
p(B=1) 2ceraPlc,B=1er,a)

p(C=1B=1)=

This is causal reasoning or prediction




Using a Bayes net for reasoning (2)

Suppose we got a call. What is the probability of a burglary? What

Is the probability of an earthquake?

p(C|B)p(B) _
_ p(ClE)P(E) _

This is evidential reasoning or explanation

What happens to the probabilities if the radio announces an
earthquake?

p(E|C, R) > p(E|C) and p(B|C, R) < p(B|C)

This is called explaining away
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Using DAGs to represent independencies

e Graphs have been proposed as models of human memory and
reasoning on many occasions (e.g. semantic nets, inference
networks, conceptual dependencies)

e There are many efficient algorithms that work with graphs, and

efficient data structures




DAGs and independencies

Given a graph (G, what sort of independence assumptions does

it imply? E.g. Consider the alarm network:

o ee

In general the lack of an edge corresponds to lack of a variable
in the conditional probability function.

But there are other independencies between variables as well
E.g. In the alarm network, we have El B, RIL{B, A,C} E
and CL{FE, B, R}|A). How about node A?

Implied independencies

Independencies are important because they can help us answer
queries more efficiently

E.g. Suppose that we want to know the probability of a radio
report given that there was a burglary. Do we really need to sum
over all values of A, C, E?

Given a Bayes net structure GG, and given values for evidence
variable Z, what can we say about the sets of variables X and
Y?

Intuitively, the evidence will propagate along paths in the graph,

and if it reaches both X and Y, then they are not independent.




A simple case: Indirect connection
X Y Z

e We interpret the lack of an edge between X and Z as a
conditional independence, X 1L Z|Y'. Is this justified?

e Based on the graph structure, we have:
p(X,Y, Z) = p(X)p(Y|X)p(Z|Y)

e Hence, we have:

pX\Y,Z)  p(X)p(Y|X)p(Z]Y)
PEXY) =Xy = popvx) - PEY)

e Note that the edges that are present do not imply dependence.

But the edges that are missing do imply independence.
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A more interesting case: Common cause

Y

N

o U

e Again, we interpret the lack of edge between X and Z as
X 1L Z|Y. Why is this true?
® This is a “hidden variable” scenario: if Y is unknown, then X

and Z could appear to be dependent on each other
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The most interesting case: V-structure

X Z

In this case, the lacking edge between X and 7 is a statement
of marginal independence: X Il Z.

In this case, once we know the value of Y, X and Z might
depend on each other.

This is the case of “explaining away” when there are multiple,
competing explanations.

Note that in this case, X is not independent of Z given Y'!
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Bayes ball algorithm

Suppose we want to decide whether X 1L Z|Y for a general
Bayes net with corresponding graph G.

We shade all nodes in the evidence set, Y

We put balls in all the nodes in X, and we let them bounce
around the graph according to rules inspired by these three
base cases

Note that the balls can go in any direction along an edge!

If any ball reaches any node in Z, then the conditional

independence assertion is not true.

12




