
Lecture 2: Conditional independence. Belief networks

� Conditional probability and Bayes rule� Independence of random variables� Using Bayes rule for inference� Conditional independence� Bayes nets: a graphical representation for conditional

independence
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Conditional probability

The basic statements in the Bayesian framework talk about

conditional probabilities. �������	��
 is the belief in event � given

that event � is known with absolute certainty:
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Note that we can use either the set intersection or the logical “and”

notation (����� ����
 , or ����������
 ).
The product rule gives an alternative formulation:
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Bayes rule

Bayes rule is another alternative formulation of the product rule:
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The complete probability formula states that:
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or more generally,
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where + * form a set of exhaustive and mutually exclusive events.
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Chain rule

Chain rule is derived by successive application of product rule:

����-/.0�2121212�3-546
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� ����- . �2121212�3- 487CB 
����;- 4@7�. �<- . �2121>12�?- 4@7'B 
�����- 4 �#- . �2121212�3- 4879. 
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Simpson’s paradox (Pearl)

The following table describes the effectiveness of a certain drug on

a population:

Male Female Overall

Recovered Died Recovered Died Recovered Died

Drug used 15 40 90 50 105 90

No drug 20 40 20 10 40 50

Good news: the ratio of recovery for the whole population increases

from 40/50 to 105/90

But the ratio of recovery decreases for both males and females!
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Simpson’s paradox (2)

The paradox lies in ignoring the context in which the results are

given.

If we derive correct conditional probabilities based on this data

(assuming 50% males in the population) we get:

��� recovery � drug 
F� GH G=IG=I & JK� &
GH L �L �M& I �ON �P1	JKQ

��� recovery � no drug 
F� GH H �H �M& JK� &
GH H �H �M& G � � �P1

I
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Using Bayes rule for inference

Often we want to form a hypothesis about the world based on

observable variables. Bayes rule is fundamental when viewed in

terms of stating the belief given to a hypothesis R given evidence S :
����R �ST
�� ����S@�#RO
$����RO
����ST
� ����R �ST
 is sometimes called posterior probability� ����RO
 is called prior probability� ����SU�!RO
 is called likelihood� ����SV
 is just a normalizing constant, that can be computed from

the requirement that ����R �ST
'&(����)WR �SV
%� G :
����SV
�� ����S@�#RO
�����RO
C&O����S@�	)WRO
�����)WRO


Sometimes we write ����R �ST
�� XY����SU�!RO
�����RO
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Example: Medical Diagnosis

A doctor knows that SARS causes a fever 95% of the time. She

knows that if a person is selected randomly from the population,

there is a
G � 7[Z chance of the person having SARS. 1 in 100 people

suffer from fever.

You go to the doctor complaining about the symptom of having a

fever (evidence). What is the probability that meningitis is the cause

of this symptom (hypothesis)?

Let \ be SARS, ] be fever:

���^\_�!]`
�� ����]a�	\�
�����\�
����]b
 � �c1 LdIfe G � 7[Z�c1g� G � �P1 LdI�ehG � 7'i
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Computing conditional probabilities

Typically, we are interested in the posterior joint distribution of some

query variables j given specific values S for some

evidence variables k
Let the hidden variables be l � - m j mnk
If we have a joint probability distribution, we can compute the

answer by “summing out” the hidden variables:

����j/�ST
%� XY����jo�pSV
�� X q ����j��pSd�?r@

Big problem: the joint distribution is too big to handle!
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Example

Suppose we consider medical diagnosis, and there are 100 different

symptoms and test results that the doctor could consider. A patient

comes in complaining of fever, dry cough and chest pains. The

doctor wants to compute the probability of SARS.� The probability table has sM� H .utvt entries!� For computing the probability of a disease, we have to sum out

over 97 hidden variables!
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Independence of random variables

Two random variables - and j are independent, denoted -xw	wyj ,

if knowledge about - does not change the uncertainty about j and

vice versa.

����zW�|{}
�� ���;z~
 (and vice versa), �~z��(\C���3{/��\'�
or equivalently, ���;z9��{}
F� ����z~
����;{}
 If � Boolean variables are

independent, the whole joint distribution can be computed as:

���;z . �21>121?z 4 
�� * ����z * 

Only � numbers are needed to specify the joint, instead of

H 4
But absolute independence is a very strong requirement, seldom

met
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Conditional independence

Two variables - and j are conditionally independent given l if:

���;zW�|{~�?r@
%� ���;zW�#r@
,���~z9�u{~��r
This means that knowing the value of j does not change the

prediction about - if the value of l is known.

We denote this by -xw	w�j/�gl .
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Example

Consider the SARS diagnosis problem with three random variables:

\ , ] , � (patient has a cough)

The full joint distribution has
H�� m G = 7 independent entries

If someone has SARS, we can assume that, the probability of a

cough does not depend on whether they have a fever:

���^���	\��?]`
F� �������	\�
 (1)

I.e., � is conditionally independent of ] given \
Same independence hold if the patient does not have SARS.

�������	)�\��?]`
F� �������	)�\%
 (2)
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Example (continued)

Full joint distribution can now be written as:

�������3]��p\%
F�
� �������3]a�	\�
�����\�

� �������	\�
�����]a�	\�
�����\�


I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove

two numbers)

Much more important savings happen if the system has lots of

variables!
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Naive Bayesian model

A common assumption in early diagnosis is that the symptoms are

independent of each other given the disease� Let ��.0�212121��24 be the symptoms exhibited by a patient (e.g. fever,

headache etc)� Let � be the patient’s disease� Then by using the naive Bayes assumption, we get:

�������v��.��>12121��246
%� �����/
�������.T�#�/
~�2�>�������249�#�/
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Recursive Bayesian updating

The naive Bayes assumption allows also for a very nice, incremental

updating of beliefs as more evidence is gathered

Suppose that after knowing symptoms ��.��212121p�04 the probability of

� is:

�����x�	� . 1>121�� 4 
�� �����/

4
*ED . �����

* �#�/

What happens if a new symptom �=4���. appears?

�����O�g��.912121��24'�p�04���.:
F� ������

4���.
*ED . ���^�

* �!��
�� �����O�g��.�12121��24Y
������24���.V�!��

An even nicer formula can be obtained by taking logs:

����� �����O�g� . 12121�� 4 ��� 4���. 
�� ���K� �����O�g� . 12121�� 4 
[& ����� ���^� 4���. �!��

17

A graphical representation of the naive Bayesian model

Sympt2

Diagnosis

Sympt1 ... Sympt n

� The nodes represent random variables� The arcs represent “influences”

This is a simple Bayes network!
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A Bayes net example
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