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Administrative issues� Class material:

– M. Jordan, Introduction to Graphical Models

– Notes by D. Koller and N. Friedman

– R.S.Sutton and A.G.Barto,

Reinforcement Learning: An Introduction

– Class notes: posed on the web page

– Additional readings: TBA� Evaluation mechanisms:

– Roughly 10-11 assignments (70%)

– Two written examinations (15% each)

– Class participation and discussions (up to 5% extra credit)� Programming assignments must function to get credit
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Uncertainty

Uncertainty is inherent in many tasks

E.g. Will leaving home
�

minutes before the flight get me to the

airport on time?� Partial knowledge of the state of the world

E.g. We do not know the road state, other drivers’ plans etc.� Noisy observations

E.g. Traffic reports� Inherent stochasticity

E.g. Flat tires, accidents etc.� Phenomena that are not covered by our models

E.g. the complexity of predicting traffic
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How do we deal with uncertainty?

� Implicit methods: ignore uncertainty as much as possible, build

procedures that are robust to uncertainty� Explicit (model-based) methods

– Build a model of the world that describes the uncertainty

about the system state, dynamics and about our

observations

– Reason about the effect of actions given the model

We will focus mainly on explicit model-based methods
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How do we represent uncertainty?

� What language should we use? What are the semantics of our

representations?� What queries can we answer with our representations? How do

we answer them?� How do we construct a representation? Do we need to ask an

expert, or can we learn from data?
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Probability

� A well-known and well-understood framework for dealing with

uncertainty� Has a clear semantics� Provides principled answers for:

– Combining evidence

– Predictive and diagnostic reasoning

– Incorporation of new evidence� Can be learned from data� Arguably intuitive to human experts
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Representing probabilities efficiently

� Naive representations of probability are hopelessly inefficient

E.g. consider patients described by several attributes:

– background: age, gender, medical history,...

– Symptoms: fever, blood pressure, headache,...

– Diseases: pneumonia, hepatitis,...� A probability distribution needs to assign a number to each

combination of values of these attributes!� Real examples involve hundreds of attributes� Key idea: exploit regularities and structure of the domain� We will focus mainly on exploiting conditional independence

properties
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A Bayesian network
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Probabilistic Reasoning

During the first half of the course we will study:� Syntax and semantics of Bayesian networks� How to efficiently answer queries in a Bayesian network� How to learn Bayesian networks from data� How to extend Bayesian networks in order to represent

properties of sequences and temporal processes
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Fielded applications

� Expert systems

– Medical diagnosis (e.g. Pathfinder)

– Fault diagnosis (e.g. jet-engines)� Monitoring

– Space shuttle engines (Vista project)

– Freeway traffic� Sequence analysis and classification

– Speech recognition

– Biological sequences� Information access

– Collaborative filtering

– Information retrieval
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Decision making� Probability is not enough for choosing actions� We also need to consider risks and payoffs
E.g. Suppose I believe the following:�����	��


gets me there on time ������ � ���������������
gets me there on time ������ � �����������! ��"�
gets me there on time ������ � ���#%$�����! '&�&��
gets me there on time ������ � ���#(#(#(#

Which action should I choose?

Depends on my preferences for missing flight vs. airport

cuisine, etc.

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory
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Practical decision making

� We need to represent both probabilities and utilities� The expected utility of actions is computed given evidence and

past actions� We choose the action that maximizes expected utility� Value of information: is it worth acquiring more information in

order to choose better actions?

13

Decision making

In the second half of the course we will study:� Utility theory� Models of repeated decision: Markov Decision Processes� Partially Observable Markov Decision Processes� Learning to act optimally
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Related fields

� Artificial Intelligence� Machine learning� Operations research� Decision theory� Statistics� Information theory� ...
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Discrete random variables and probability

� A discrete random variable ) describes an outcome that

cannot be determined in advance (e.g. the roll of a die)� The sample space * of a random variable ) is the set of all

possible values of the variable

E.g. For a die, *,+ -/.�0�12043507680�9204:<;� An event is a subset of * . E.g. =>� ?A@CB corresponds to a die roll of 1� Usually, random variables are governed by some “law of

nature”, described as a probability function D defined on * .DFEHGJI defines the chance that variable ) takes value GLKM* .

E.g. for a die roll with a fair die, N � @��O�PN �RQ �O� ����SN �UT �V� @�W T
Note that we still cannot determine the value of ) , just the

chance of encountering a given value
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Discrete random variables

If ) is a discrete variable, then a probability space DXEHGJI has the

following properties:

Y[Z DFEHGJI Z .�0]\JGPK^* and _a`<bODFEHGJIc+ .
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Terminology� The n-th moment of a random variable ) is defined as:d e + _a`<b�G e DFEHGJI
� The first moment is called the expectation or mean:

f -(Gg;h+ d  + _a`<b�GiDXEHGJI
E.g. for a roll with a fair die, the expectation is:d  + _a`kj  4lm�nlpo�lq&�l�
rlpsrt G .: + 35uv9
As illustrated above, the expectation is not the value we expect

to see the most!
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And more terminology...� The variance is defined as:wyx{z -(Gg;h+ d �}| d � + f -(G � ; | f -(Gg; �
� The standard deviation ~�+ � wyx{z -AGg; evaluates the

“spread” of G with respect to its mean
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Beliefs

� We will use probability in order to describe the world and the

existing uncertainties� Beliefs (also called Bayesian or subjective probabilities) relate

logical propositions to the current state of knowledge� Beliefs are subjective assertions about the world, given one’s

state of knowledge

E.g. ��E Some day AI agents will rule the world Ic+ Y u�1 reflects a

personal belief, based on one’s state of knowledge about

current AI, technology trends, etc.� Different agents may hold different beliefs� Prior (unconditional) beliefs denote belief prior to the arrival

of any new evidence.

20



Axioms of probability

Beliefs satisfy the axioms of probability.

For any propositions � , � :

1.
Y�Z ��E���I Z .

2. ��ER� z���� Ic+ .
3. ��E�� ����I�+ ��E���Ig� ��E���I | ��E�� ����I , or equivalently,��E�� ����I�+ ��E���Ig� ��E���I if � and � are mutually exclusive

The axioms of probability limit the class of functions that can be

considered probability functions.

Using functions that disobey these laws as probabilities can force

suboptimal decisions (de Finetti, 1931).
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Defining probabilistic models

� We define the world as a set of random variables� + -()  u�u�u7) e ; .� A probabilistic model is an encoding of probabilistic

information that allows us to compute the probability of any

event in the world

A simple probabilistic model:� We divide the world into a set of elementary, mutually exclusive

events, called states

E.g. If the world is described by two Boolean variables ��0�� , a

state will be a complete assignment of truth values for � and � .� A joint probability distribution function assigns non-negative

weights to each event, such that these weights sum to 1.
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Inference using joint distributions

E.g. Suppose � x D�D8� and � ��� � �C� are the random variables:

� x D�D���+ � z��g� � x D�D8��+   x<¡��(�
� �%� � �C� + � z���� Y u Y 9 Y u¢.
� �%� � �C� +   x<¡��A� Y u£: Y u�1�9

The unconditional probability of any proposition is computable as

the sum of entries from the full joint distribution

E.g.��E�� x D�D���I¤+ ��E�� x DiD8�J07� �%� � �(� I<�L��E�� x D�D8�J0�¥¦� �%� � �(� Ic+ Y u£:i9
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