
L
ectu

re
20:

A
p

p
roxim

atio
n

M
eth

o
d

s
in

M
D

P
s

�

G
eneralprinciple

�

G
radientdescentm

ethods

�

U
sing

linear
function

approxim
ation

�

C
ontrolm

ethods
w

ith
linear

function
approxim

ation

1

W
hy

fu
n

ctio
n

ap
p

roxim
atio

n
?

�

In
general,state

spaces
are

continuous
or

too
large

to
represent

as
a

table

�

Ifevery
state

has
a

separate
entry

in
the

table,and
ifw

e
use

learning,then
every

state
has

to
be

visited
atleasta

few
tim

es

before
having

a
good

approxim
ation;in

the
lim

itevery
state

should
be

visited
infinitely

often,w
hich

is
notfeasible

M
ain

id
ea:

U
se

a
function

approxim
ator

to
generalize

from
the

seen

states
to

unseen
ones

21

R
ep

resen
tatio

n

�

E
ach

state
(or

state-action
pair)

is
represented

as
a

feature

vector

� φ
1� ���

φ
n�

�

F
eatures

are
usually

chosen
a

priori,and
their

range
is

typically

know
n

�

Today
w

e
assum

e
no

m
odelregarding

how
features

evolve

individually
over

tim
e,butw

e
do

assum
e

the
M

arkov
property

at

the
state

level

3

V
alu

e-b
ased

m
eth

o
d

s

W
e

w
illuse

a
function

approxim
ator

to
representthe

value
function

�

T
he

inputis
the

feature
vector

ofthe
state

(or
state-action

pair)

�

T
he

outputis
the

predicted
value

ofthe
state

(or
state-action

pair)

�

T
he

target(desired)
outputcom

es
from

the
M

D
P

/R
L

algorithm

E
.g.

for
T

D
(0),the

targetw
ould

be
rt�

1

�

γV

� st�

1�

42



W
h

at
kin

d
o

f
fu

n
ctio

n
ap

p
roxim

ato
r

can
w

e
u

se?

In
principle,there

are
lots

ofoptions:

�

A
table

w
here

severalstates
are

m
apped

to
the

sam
e

location
-

state
aggregation

�

G
radient-based

m
ethods:

–
Linear

approxim
ators

–
A

rtificialneuralnetw
orks

–
R

adialB
asis

F
unctions

–
...

�

M
em

ory-based
m

ethods:

–
N

earest-neighbor

–
Locally

w
eighted

regression5

S
p

ecialreq
u

irem
en

ts

�

A
llow

increm
entalupdates

�

A
bility

to
handle

non-stationary
targetfunctions

�

Fastadaptation

63

S
tate

ag
g

reg
atio

n

�

M
ap

the
state

space
S

into
a

finite
num

ber
ofpartitions

p
1� ���

p
n .

�

C
om

pute
a

value
function

pretending
thatthe

partitions
are

states
in

an
M

D
P

�

N
ote

thatifthe
policy

is
fixed,w

e
have

indeed
a

M
arkov

process

over
partitions,so

allalgorithm
s

for
policy

evaluation
w

ork

�

B
utifw

e
change

the
policy,the

partition
M

D
P

changes!
S

o

controlis
notso

easy...
butstillw

orks

�

T
he

partition
function

determ
ines

how
good

a
value

function
w

e

can
getover

partitions

7

M
em

o
ry-b

ased
m

eth
o

d
s

K
ey

idea:
juststore

allexam
ples

� s� V

� s��

N
earestneighbor:

G
iven

state
s,firstlocate

“nearest”
state

seen,ŝ,

then
estim

ate
V̂

� s�
�

V

� ŝ�

k-N
earestneighbor:

Take
m

ean
ofV

values
ofk

nearestneighbors:

V̂

� s�
�

∑
ki �

1 V

� si�

k

Locally
w

eighted
regression:

form
an

explicitapproxim
ation

V̂

� s�

for

region
surrounding

s

�

F
itlinear

function
to

k
nearestneighbors

�

F
itquadratic,...

�

P
roduces

“piecew
ise

approxim
ation”

to
V

84



P
ro

s
an

d
o

n
s

o
f

m
em

o
ry-b

ased
m

eth
o

d
s

A
dvantages:

�

Training
is

very
fast

�

Learn
com

plex
targetfunctions

�

D
o

notlose
any

inform
ation

�

Local!
H

ence
have

good
convergence

properties

D
isadvantages:

�

S
low

atquery
tim

e

�

E
asily

fooled
by

irrelevantattributes

�

N
eed

lots
ofdata

(butthis
is

true
ofR

L
in

general)

9

G
rad

ien
t

D
escen

t
M

eth
o

d
s

C
onsider

the
policy

evaluation
problem

:
learning

V
π

for
a

given

policyπ

T
he

approxim
ate

value
function

V

� st� �

f� θ

� φ
t� ,w

here
φ

t
are

the

attributes
(features)

describing
st ,and

θ
is

a
p

aram
eter

vecto
r

E
.g.θ

could
be

the
connection

w
eights

in
a

neuralnetw
ork

W
e

w
illupdate

θ
based

on
the

errors
com

puted
by

the

reinforcem
entlearning

algorithm

105

P
erfo

rm
an

ce
m

easu
re

�

W
e

w
antto

find
a

param
eter

vectorθ
thatm

inim
izes

the
m

ean

squared
error:

M
SE

� θ

� �

12 ∑s�

S P

� s�
� V

π

� s���

V

� s�� 2

W
hatshould

P
be?

�

In
our

case
P

is
the

o
n

-p
o

licy
d

istrib
u

tio
n

:
distribution

of

states
created

w
hen

the
agentacts

according
to

π

11

G
rad

ien
t

d
escen

t
u

p
d

ate

W
orks

like
in

the
supervised

learning
case:

θ

�

θ �

α∇
θ M

SE� θ�

�

θ �

α∇
θ

12 ∑s	

S P� s�� V
π� s� �

V

� s�� 2

�

θ


α∑s	

S P� s�� V
π� s� �

V

� s�� ∇
θ V

� s�

To
do

this
increm

entally,w
e

use
the

sam
p

le
g

rad
ien

t:

θ�
θ


α

� V
π� s� �

V

� s�� ∇
θ V

� s�

T
he

sam
ple

gradientis
an

unbiased
estim

ate
ofthe

true
gradient.

T
he

rule
w

ould
converge

to
a

localm
inim

um
ofthe

error
function,if

α
is

decreased
appropriately

over
tim

e

B
utw

here
do

w
e

get V
π?
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U
sin

g
T

D
targ

ets

Instead
ofV

π,w
e

w
illuse

the
targets

thatcom
e

from
the

T
D

� λ

�

algorithm
:

θ

�

θα

� ν
t� s���

V
� s�� ∇

θ V

� s�

Ifw
e

use
M

onte
C

arlo,then
ν

t �

R
t

is
an

unbiased
estim

ate
ofthe

true
value

function,and
the

algorithm
stillconverges

to
a

local

m
inim

um
,provided

α
is

decreased
appropriately

If ν
t �

R
λt

w
ith

λ

�

1
,ν

t
is

n
o

t
an

unbiased
estim

ate,and
w

e

cannotsay
anything

aboutthe
convergence

in
general

B
utthe

algorithm
is

w
elldefined,and

used
in

practice

13

O
n

-lin
e

g
rad

ien
t

d
escen

tT
D

� λ

�

In
addition

to
the

w
eightvectorθ

,w
e

w
illhave

an
eligibility

trace

vectore,w
ith

one
eligibility

for
every

w
eight

1.
Initialize

the
w

eightvectorθ
arbitrarily,and

e
=

0.

2.
P

ick
a

startstate
s

3.
R

epeatfor
every

tim
e

step
t:

(a)
C

hoose
action

a
based

on
policyπ

and
the

currentstate
s

(b)
Take

action
a

,observe
im

m
ediate

rew
ard

r
and

new
state

s �

(c)
C

om
pute

the
T

D
error:δ

�

r

�

γV

� s �
� �

V

� s�

(d)
C

om
pute

the
eligibility

ofevery
w

eightvector
to

be
updated:

e�

γλe


∇
θ V

� s�

(e)
U

pdate
the

w
eightvector:θ

�

θ

�

αδe
(f)

s

�

s �
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L
in

ear
m

eth
o

d
s

E
ach

state
represented

by
feature

vectorφ� s� �
� φ

1� s� ���

φ
n� s����

T
he

value
function

is
a

linear
com

bination
ofthe

features:

V

� s� �

θ �

φ

� s� �

n∑i �

1 θ
i φ

i� s�

S
o

the
gradientis

very
sim

ple:∇
θ V

� s� �

φ

� s�

T
he

error
surface

is
quadratic

w
ith

a
single

globalm
inim

um

T
sitsiklis

and
V

an
R

oy:
Linear

gradient-descentT
D

� λ

�

converges

w
.p.1

to
a

param
eter

vectorθ
∞

in
the

“vicinity”
ofthe

bestparam
eter

vectorθ �

:

M
SE

� θ
∞

� 	

1 �

γλ
1 �

γ
M

SE

� θ �
�

15

C
o

arse
co

d
in

g

M
ain

idea:
w

e
w

antlinear
function

approxim
ators,butw

ith
lo

ts
o

f

featu
res,so

they
can

representcom
plex

functions

a) N
arrow

 generalization
b) B

road generalization
c) A

sym
m

etric generalization

168



S
p

eed
o

f
learn

in
g

w
ith

co
arse

co
d

in
g

1040

160

640

2560

10240

N
arrow

features

desired
function

M
edium

features
B

road
features

#E
xam

ples
approx-
im

ation

feature
w

idth

T
he

w
idth

ofthe
cells

affects
the

speed,notthe
precision

ofthe
learner

17

D
iscretizin

g
th

e
state

sp
ace

S
uppose

w
e

have
a

continuous
state

space
w

ith
tw

o
continuous

variable
(e.g.

like
in

the
M

ountain-C
ar

task)

T
he

sim
plesttile

coding
approxim

ator
w

ould
be

justa
grid

discretizing
the

state
space:

�

T
he

features
are

all0
exceptfor

the
cellholding

the
current

state,w
hich

is
1

(like
a

1-of-n
encoding)

�

A
llstates

in
the

sam
e

cellhave
the

sam
e

value
(given

by
the

w
eightofthe

cell)

189

P
ro

s
an

d
co

n
s

o
f

d
iscretizatio

n
s

P
ros:

�

E
asy

to
com

pute
the

value
function

ofa
state

�

E
asy

to
update

as
w

ell(m
ore

like
the

table
lookup

case).

C
ons:

�

To
getgood

precision,w
e

need
a

very
fine

grid
-

going
back

to

the
table

lookup
case?

�

S
tates

in
the

vicinity
ofa

separation
line

could
have

radically

differentvalues
(approxim

ation
is

discontinuous)

19

T
ile

co
d

in
g

(co
n

tin
u

ed
)

M
ain

id
ea:

O
verlap

severaltilings!
tiling #1

tiling #2

S
hape of tiles ⇒

 G
eneralization

#T
ilings ⇒

 R
esolution of final approxim

ation

2D
 state

space

20
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C
h

aracteristics
o

f
tile

co
d

in
g

�

E
ach

tile
is

a
binary

feature

�

T
he

num
ber

offeatures
thatare

activated
atany

tim
e

is

constant,equalto
the

num
ber

oftilings

�

Itis
easy

to
com

pute
the

indices
ofthe

features
activated,and

easy
to

com
pute

the
w

eighted
sum

�

T
he

overalldiscretization
is

very
fine,and

atthe
sam

e
tim

e
the

discontinuities
are

sm
oothed

out

�

T
he

shape
ofthe

tiles
reflects

prior
dom

ain
know

ledge

C
f.

C
M

A
C

(A
lbus,1971)

21

C
o

n
tro

lw
ith

fu
n

ctio
n

ap
p

roxim
atio

n

�

Input:
a

description
ofthe

state-action
pair

� st� a
t�

�

O
utput:

an
action-value

function
Q

� st� a
t�

�

T
he

generalgradientdescentrule:

θ

�

θ

�

α

� ν
t �

Q

� st� a
t�� ∇

θ Q

� st� a
t�

�

E
xam

ple:
S

arsa(λ
)

θ

�

θ

�

αδ
t e

t

w
here

δ
t �

rt�

1

�

γQ

� st�

1� a
t�

1� �

Q

� st� a
t�

and
e

t �

γλe
t �

∇
θ Q

� st� a
t�
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Illu
stratio

n
:

M
o

u
n

tain
-C

ar
task
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P

osition
0.6

S
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G
oal

P
osition

40
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P
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P
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P
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2
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M
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U
N
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A
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T
h

eo
ry

o
f

co
n

tro
lalg

o
rith

m
s

�
S

arsa
proven

to
converge

to
a

region
ofpolicy

space
(G

ordon,

2001)

�

Q
-learning

show
n

to
diverge

in
extrem

ely
sim

ple
exam

ples

�

A
few

off-policy
evaluation

algorithm
s

thatm
ightshed

lightinto

Q
-learning

behavior
(P

recup
etal,2000,2001)

�

O
ne

ofthe
convergence

problem
s

is
bootstrapping

24
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B
aird

’s
co

u
n

terexam
p

le

V
k (s) = 

θ
(7)+

2θ
(1)

term
inal

state
99%

 
1%

 

100%
 

V
k (s) = 

θ
(7)+

2θ
(2)

V
k (s) = 

θ
(7)+

2θ
(3)

V
k (s) = 

θ
(7)+

2θ
(4)

V
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θ
(7)+
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(5)

V
k (s) = 

2θ
(7)+θ

(6)

0 5 10

0
1000

2000
3000

4000
5000

10

10

/ -10

Iterations (k)

5
1010

10

0
10

--

P
aram

eter
values, θ

k (i)
(log scale,

broken at ±
1

)

θ
k (7)

θ
k (1) – θ

k (5)

θ
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S
h

o
u

ld
w

e
b

o
o
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P
o

licy-b
ased

m
eth

o
d

s

M
ain

id
ea:

Instead
ofapproxim

ating
the

value
function,

approxim
ate

the
policy

directly

�

A
function

approxim
ator

w
hich

outputs
the

probability
oftaking

an
action

�

P
aram

eters
are

updated
in

the
direction

ofthe
gradientofthe

return

�

W
e

can
com

pute
this

ifthe
policy

has
specialform

s
(e.g.

softm
ax)

�

M
u

ch
b

etter
th

eo
reticalg

u
aran

tees!

T
he

policy
changes

sm
oothly

�

B
utinitialem

piricalevidence
suggests

slow
in

practice
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