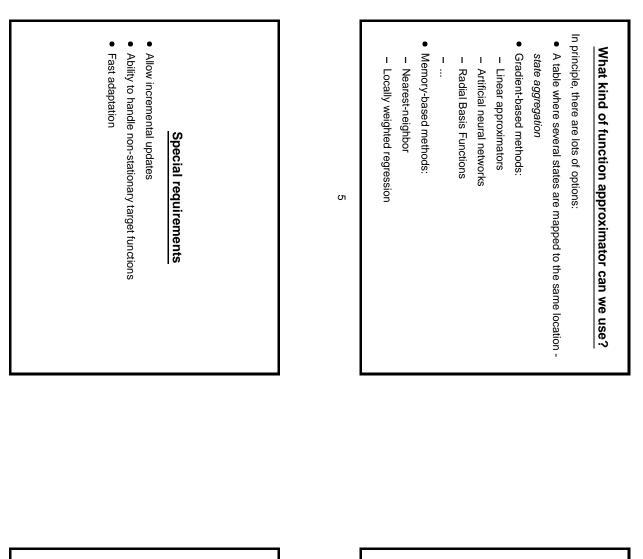


- Each state (or state-action pair) is represented as a feature vector $\langle \phi_1, \phi_n \rangle$
- Features are usually chosen a priori, and their range is typically known
- Today we assume no model regarding how features evolve individually over time, but we do assume the Markov property at the state level

ω

We will use a function approximator to represent the value function The input is the feature vector of the state (or state-action pair) The output is the predicted value of the state (or state-action • The target (desired) output comes from the MDP/RL algorithm pair) E.g. for TD(0), the target would be $r_{t+1} + \gamma V(s_{t+1})$ Value-based methods



State aggregation

- Map the state space S into a finite number of partitions
 *p*₁,...,*p*_n.
- Compute a value function pretending that the partitions are states in an MDP
- Note that if the policy is fixed, we have indeed a Markov process over partitions, so all algorithms for policy evaluation work
- But if we change the policy, the partition MDP changes! So control is not so easy... but still works
- The partition function determines how good a value function we can get over partitions

7

Memory-based methods

Key idea: just store all examples $\langle s, V(s)
angle$

Nearest neighbor: Given state s, first locate "nearest" state seen, \hat{s} , then estimate $\hat{V}(s) \leftarrow V(\hat{s})$ k-Nearest neighbor: Take mean of V values of k nearest neighbors:

$$\sum_{i=1}^{k} V(s_i)$$

$$\hat{V}(s) \leftarrow rac{{{\cal L}_{i=1} |V|^{(s_i)}}}{k}$$

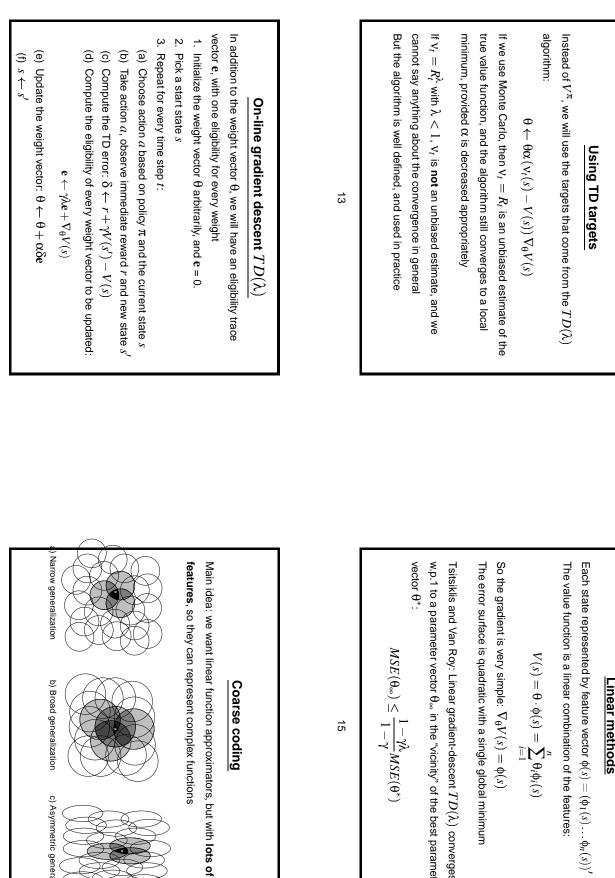
Locally weighted regression: form an explicit approximation $\hat{V}(s)$ for region surrounding s

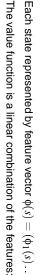
- Fit linear function to k nearest neighbors
- Eit quadratic
- Fit quadratic, ...
- Produces "piecewise approximation" to V

ω

თ

	Performance measure
Advantages:	1000
 Training is very fast 	 we want to find a parameter vector to that minimizes the mean
 Learn complex target functions 	squared error:
 Do not lose any information 	$MCF(\Theta) = \frac{1}{2} \sum p(e) (V^{\pi}(e) - V(e))^2$
 Local! Hence have good convergence properties 	$m_{J} = (v) - 2 \sum_{s \in S} (v) (v - (v))$
Disadvantages:	What should P be?
 Slow at query time 	• In our case P is the on-molicy distribution of
 Easily fooled by irrelevant attributes 	states created when the agent acts according to π
 Need lots of data (but this is true of RL in general) 	
9	11
	Gradient descent update
Gradiant Descent Mathods	Works like in the supervised learning case:
	$\theta \leftarrow \theta - \alpha \nabla_{\theta} MSE(\theta)$
Consider the policy evaluation problem: learning V^{π} for a given policy π	$= \theta - \alpha \nabla_{\theta} \frac{1}{2} \sum_{s \in s} P(s) (V^{\pi}(s) - V(s))^2$
The approximate value function $V(s_t)=f(heta,\phi_t),$ where ϕ_t are the	$= \theta + \alpha \sum_{s \in S} P(s) \left(V^{\pi}(s) - V(s) \right) \nabla_{\theta} V(s)$
attributes (features) describing s_t , and $ heta$ is a parameter vector	To do this incrementally, we use the sample gradient:
E.g. θ could be the connection weights in a neural network	$m{ heta} \leftarrow m{ heta} + m{lpha} \left(V^{\pi}(s) - V(s) ight) abla_{m{ heta}} V(s)$
We will update θ based on the errors computed by the	The sample gradient is an unbiased estimate of the true gradient.
reinforcement learning algorithm	The rule would converge to a local minimum of the error function, if
	α is decreased appropriately over time
	But where do we get V^{π} ?





Linear methods

Each state represented by feature vector $\phi(s) = (\phi_1(s) \dots \phi_n(s))'$

 $V(s) = \Theta \cdot \phi(s) = \sum_{i=1}^{N} \Theta_i \phi_i(s)$

So the gradient is very simple: $abla_{\theta}V(s) = \phi(s)$

The error surface is quadratic with a single global minimum

Tsitsiklis and Van Roy: Linear gradient-descent $TD(\lambda)$ converges

w.p.1 to a parameter vector θ_∞ in the "vicinity" of the best parameter vector Θ^* :

 $MSE(\theta_{\infty}) \leq rac{1-\gamma}{1-\gamma}MSE(\theta^*)$

과

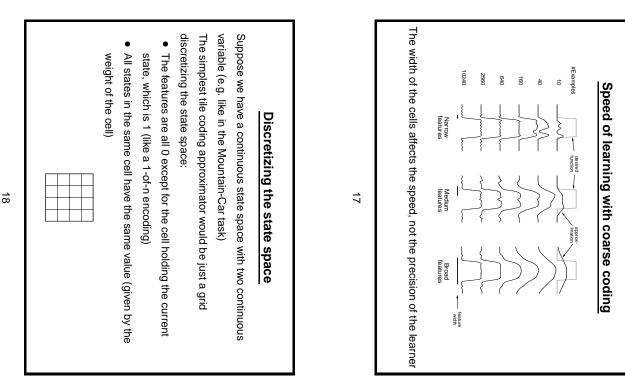
Coarse coding

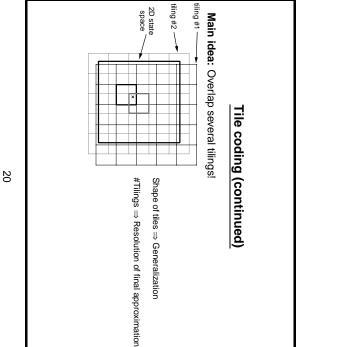
14 4

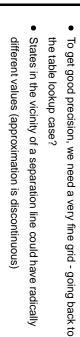
16

b) Broad generalization

c) Asymmetric generalizat







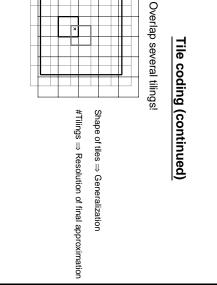
Pros:

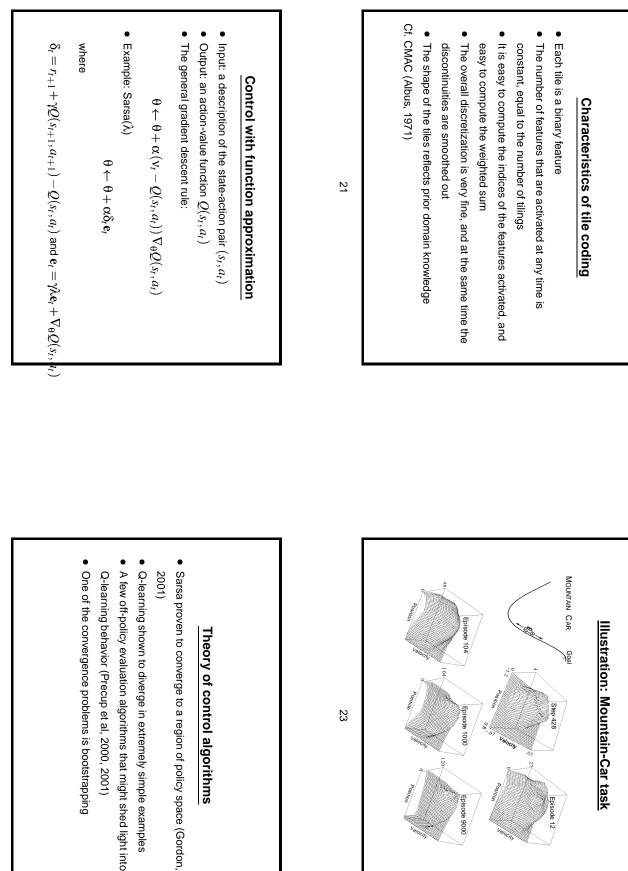
Cons:

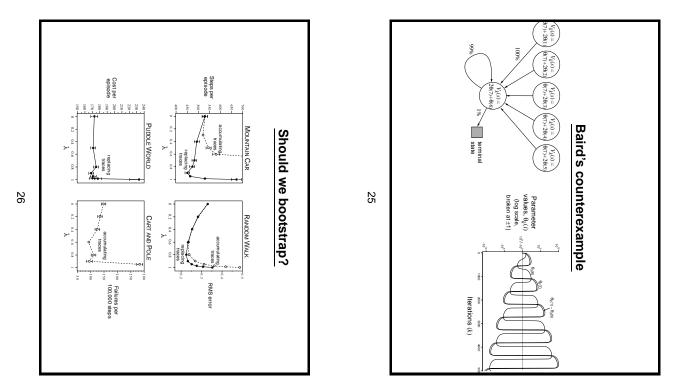
Easy to update as well (more like the table lookup case).

Easy to compute the value function of a state

Pros and cons of discretizations







Policy-based methods

Main idea: Instead of approximating the value function,

approximate the policy directly

- A function approximator which outputs the probability of taking an action
- Parameters are updated in the direction of the gradient of the return
- We can compute this if the policy has special forms (e.g. softmax)
- Much better theoretical guarantees!
- The policy changes smoothly
- But initial empirical evidence suggests slow in practice

27