Lecture 14: Introduction to Decision Making

Preferences
Utility functions
Maximizing expected utility

Value of information

Preferences

A rational method would be to evaluate the benefit (desirability,
or value) of each consequence and weigh these by the

probabilities of the consequences

We will call the consequences of an action payoffs or prizes

In order to compare different actions we need to know, for each

one, the set of consequences C = {c1,...c,} and a

probability distribution over the consequences, P, s.t.
Y Plei) =1
e Apair L = (C, P) is called a lottery (Luce and Raiffa, 1957)
e So choosing between actions amounts to choosing between
lotteries

Actions and consequences

So far, we have focused on ways of modeling a stochastic,
uncertain world

But intelligent agents should be not only observers, but actors
I.e. they should choose actions in a rational way

Most often, actions produce as a consequence changes in the
world

Pearl example: buying a baseball ticket

How should we choosing between buying and not buying a

ticket???

Lotteries
e A lottery can be represented as a list of pairs, e.g.

L =[Ap;B,(1-p)]

or as a tree-like diagram:

1-p
B

e Agents have preferences over payoffs:
— A > B - Apreferred to B
— A ~ B - indifference between A and B
- AZ B - Bnot preferred to A
e |n order for an agent to act rationally, its preferences have to
obey certain constraints




Example: Transitivity

Suppose an agent has the following preferences:B > C, A > B,
C > A, anditowns C.
If B > C, then the agent would

pay (say) 1 cent to get B ‘> -

If A = B, then the agent, who 1€ 1c

now has B would pay (say) 1 cent

toget A \ 4
B C

If C > A, then the agent (who A

now has A) would pay (say) 1 cent /Ho\

to getC

The agent looses money forever!

3. Substitutability: Adding the same prize with the same probability
to two equivalent lotteries does not change the preference
between them:

Forany L1,L2,L3,0 <p < 1,L1 ~ Ly < [p,L1;(1—p), La] ~ [p, L3

4. Monotonicity: If two lotteries have the same prizes, the one
producing the best prize most often is preferred

A>B=[p,A;(1-p),BlZ[p,A;(1-p),Bliftp > p'

5. Reduction of compound lotteries (“No fun in gambling”): For any
lotteries Ly and Ly = [p, C1; (1 — p), Ca],

[p, L1; (1 = p), Lo] ~ [p, L1; (1 = p)q, C1; (1 — p)(1 — q)Co]

MAH\Evv H\w”_

The Axioms of Utility Theory

These specify constraints over the preferences that a rational agent
can have:
1. Orderability: A linear and transitive preference relation must
exist between the prizes of any lottery
e Linearity: (A> B)V (B > A)V (A~ B)
e Transitivity: (A > B)A (B > C) = (A > C)
2. Continuity: If A = B > C, then there exists a lottery L with

prizes A and C that is equivalent to receiving B for sure:
Ip,L=[p,A; 1-p,C]~B

The probability p at which equivalence occurs can be used to

compare the merit of B w.r.t A and C

Maximizing expected utility (MEU)

If an agent has rational preferences, his behavior is describable as

maximization of expected utility

Theorem: (Ramsey, 1931; von Neumann and Morgenstern, 1944):
Given a preference relation over lotteries satisfying the axioms of
utility theory, there exists a real-valued function U on the set of
prizes C such that

Ly % Lo it U(L1) > U(L2)

where

U([p1,C15 - 3 pnsCal) = Y pilI(Ci)

Proof: see Pearl book and board




Acting under Uncertainty

MEU principle: Choose the action that maximizes expected
utility. Most widely accepted as a standard for rational behavior
Note that an agent can be entirely rational (consistent with

MEU) without ever representing or manipulating u
probabilities

E.g., a lookup table for perfect tic-tac-toe
Random choice models: choose the action with the highest
expected utility most of the time, but keep non-zero probabilities
for other actions as well

— Avoids being too predictable

— If utilities are not perfect, allows for exploration

Minimizing regret

Utility scales

e Note that given a preference behavior, the utility function is NOT
unique

e E.g. behavior is invariant w.r.t. additive linear transformations:
U'(z) =kiU(x) + ko wherek; >0

e With deterministic prizes only (no lottery choices), only ordinal

utility can be determined, i.e., total order on prizes
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Utilities

Utilities map states to real numbers. How do we get these
numbers?

The proof of the utility theorem suggests that a way to obtain
these numbers is by comparing a given prize A with a standard
(calibration) lottery L, that has

— “best possible prize” ur with probability p

— “worst possible catastrophe” u; with probability (1 — p)
Usually utilities are normalized: u+ = 1.0, . = 0.0

Adjust lottery probability p until A ~ L,,. Then p is used as the
utility of A.

Money

e Suppose you had to choose between two lotteries:
— Ly: win $1 million for sure
— L»: 5 million w.p. 0.1, 1 million w.p. 0.89 and nothing w.p.
0.01
e Suppose you had to choose between two lotteries:

— L3: 5 million w.p. 0.1, nothing w.p. 0.9

— L4: 1 million w.p. 0.11, nothing w.p. 0.89
e See also Bernoulli's paradox

e People are risk-averse
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Decision networks

Add action nodes (rectangles) and utility nodes (diamonds) to belief

networks to enable rational decision making

Airport Site

1. For each value of action node:
compute expected value of utility node given action, evidence
2. Return MEU action
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Solution for the example

Compute expected value of information = expected value of best
action given the information minus expected value of best action

without information

Survey may say “oil in A” or “no oil in A”, with probability 0.5 each:
=[0.5 x value of “buy A" given “oil in A”

+ 0.5 x value of “buy B” given “no oil in A”]

-0=(0.5xk/2)+ (0.5 xk/2) —0=F/2

Example: Value of Information

Buying oil drilling rights:

e Two blocks A and B, exactly one has oil, worth k

Prior probabilities 0.5 each, mutually exclusive
e Current price of each block is k/2
e Consultant offers accurate survey of A

What is a fair price for the survey?
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Value of Perfect Information (VPI)

Current evidence E, current best action «
Possible action outcomes c;, potential new evidence X

EU(a|E) = Bme U(c:)P(ci|E, a)

Suppose we knew X = z. Then we would choose a; s.t.

EU(az|E, X =z) = meM U(ci)P(ci|E,a, X = x)

X is a random variable whose value is currently unknown
= we must compute expected gain over all possible values:

VPIg(X)= > P(X =2|B)EU(0s|E, X = 2) | ~EU(0|E)
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Properties of VPI

e Nonnegative: VX, EVPIg(X) >0
Note that VPI is an expectation! Depending on the actual value
we find for X, there can actually be a loss post-hoc

e Nonadditive—e.g. consider obtaining X twice

VPIg(X,Y)# VPIg(X)+ VPIg(Y)
e Order-independent
VPIg(X,Y)=VPIg(X)+VPIgx(Y) =VPIg(Y)+VPI{

Note: when more than one piece of evidence can be gathered,
maximizing VPI for each to select one myopic strategy is not always
optimal

= evidence-gathering becomes a sequential decision problem

v (X)
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Qualitative behaviors

There are three possible cases:
e Choice is obvious, information worth little
e Choice is nonobvious, information worth a lot
e Choice is nonobvious, information worth little

P(UIE) P(UIE) P(UIE)

u

Information has value to the extent that it is likely to cause a change

in plan, and the new plan is significantly better than the old one
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Summary: Decision making under uncertainty

To make decisions under uncertainty, we need to know the
likelihood (probability) of different possible outcomes, and have
preferences among the outcomes:

Decision Theory = Probability Theory + Utility Theory
An agent with consistent preferences has a utility function,
which associates a real number to each possible state
Rational agents try to maximize their expected utility.
Utility theory allows us to determine whether gathering more
information is valuable.
Next time: sequential decision making (Markov Decision
Processes)
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