Lecture 7: Approximate Inference: Sampling

Random sampling from a Bayes net
Logical (rejection) sampling
Likelihood weighting

Gibbs sampling and MCMC



Random sampling

Main idea:
e Use the Bayes net as a model of the world, and generate

samples
A sample is a tuple where every random variable is instantiated

to some value
e Then approximate the required probability distribution using
counts
Two main kinds of methods:
e Forward sampling

® Monte Carlo Markov Chalin



Example: Sprinkler network
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Example: Forward sampling

1. Sample C' according to its probability distribution. Say C = 1.
2. Sample R accordingto P(R|C' =1). Say R = 1.

3. Sample S according to P(S|C' =1). Say S = 0.

4. Sample W accordingto P(W|R=1,5=0). Say W = 1.

Now we have a complete sample: (C =1, R=1,5=0,W = 1)
We repeat the steps above to generate a new sample.
Eg C=0R=0,5=1,W=1

This process is called logic sampling



Example (continued)

Suppose we generate N samples using the above technique.
How do we compute P(W)?

How do we compute P(W = 1|C = 1)?
P(C=1,W =1)
P(C=1)
n(C=1,W=1) N n(C=1,W=1)

P(W =1|C = 1)

&

N n(C=1)  n(C=1)
Note that we did not use all the samples in this computation!

Only the samples in which C' = 1 were used.



Rejection sampling

e Generate samples by forward sampling of the network:
— Let X4, ... X, be an ordering of the variables consistent
with the arc direction in the Bayes net structure
— Fori =1,...,n,sample X; from P(X;|Parents(X;)).
Note that all the parents of X; are surely instantiated when we
get to sample X;.
e Throw away the samples inconsistent with the evidence
Problem: If the evidence is unlikely, then we will throw away most
samples, and it takes a long time to gather enough data for a

reliable estimate.



Becoming more efficient

Suppose we want to estimate P(W = 1|C' = 1). Before, we threw
away the samples in which C' = 0. So why generate them in the
first place?
Main idea: Fix the values for the evidence variables, sample only
the other variables. Then we can use all the samples.
In our case, set C' = 1, then:

1. Sample R from P(R|C = 1)

2. Sample S from P(S|C = 1)

3. Sample W from P(W|R, S)

Now if we approximate P(W = 1|C = 1) by n(W=1)

N We should

be all set.



Downstream evidence

Suppose we want to compute P(C|W = 1). We fix W = 1 and we
need to sample C, R, S.
e We would like to sample R from P(R|W = 1).
But we do not have these probabilities! We could do arc
reversal on the network, but that can lead to much larger tables.
e |dea: sample the network top-down like before, but fix the
values of the evidence variables. E.qg.
1. Sample C according to P(C'). Say C' = 0.
2. Sample R according to P(R|C =0). Say R =0
3. Sample S according to P(S|C = 0). Say S = 0.
4. W =1 (since it is the evidence)

But now we generated a sample that has 0 probability!



A simple case

Consider a very simple network: X — Y.
We want to compute P(X|Y = 1).
1. Sample X from P(X)
2. SetY =1
Problem: These samples come from P(X), not P(X,Y =1). So

we have:




A simple case (continued)

To see the fix to this problem, let us consider how we would
compute P(X =1,Y = 1) exactly:

P(X=1Y=1)=P(Y =1/X =1)P(X = 1)

Since our sample count approximates P(X = 1), all we have to do
is multiply the estimate by the weight P(Y = 1|X = 1).

We do the same thing to estimate P(Y = 1, X = 0). Then we can

approximate the conditional as usual.

This is called likelihood weighting



Likelihood weighting

Let X1,....X, be an ordering of the variables consistent with the
arc direction in the Bayes net structure
1. Repeatfor: =1,..., N times:
(@ w=1
(b) Foryg =1,...,ndo:
e |f X; has been observed (as evidence),
w <+ w- P(X; = zj|Parents(X;))
e Else sample X, from P(X,|Parents(X;))
N
2. P(qle) ~ 2zimy

>
gu
i=1 ¢




Importance sampling

Likelihood weighting is a special case of a more general procedure,
called importance sampling
® Suppose we want to estimate the expected value of a random
variable X drawn according to the probability distribution p(X).

e But instead, we have only samples drawn according to p'(X).

e We do a simple trick:

E(X) = MU&%AN = xi) = MU&%\AN = ;) P2 = &@..v

) 7

e So we will average each sample x; weighted by the ratio of its
probability under the target and the sampling distribution.

We will use this idea again in Markov Decision Processes.



Error of likelihood weighting

e [ntuitively, the weights reflect the probabilities of the samples.
So to get a good approximation, we require a certain “mass”

e Several bounds exist, all specifying the total mass as a function
of the error guarantees and the “extremeness” of the CPDs

e Hence, we might still need a lot of samples before we can make

good estimates!



MCMC methods

Another quite different idea is to generate a “random walk” over
variable assignments that are consistent with the evidence.
e View the sampling process as a Markov Chain
e \We always generate a new sample by “perturbing” a previously
generated sample
e In the limit, if we are careful, the samples will approximate the

desired distribution



Gibbs sampling

1. Initialization
e For each evidence variable X ;, set it to the observed value
L j
e Set all other variables to random values (e.g. by forward
sampling)
This gives us a sample z1, ..., z,.
2. Repeat
e Pick a variable X; uniformly randomly
e Sample z; from P(X;|z1,...,%i—1,Tit1,...,Tn,€).
e For all other variables, preserve the existing values:
T =x;,V] #1

J
e The new sampleis z7,..., ),



Why Gibbs works in Bayes nets

The key step is sampling according to
P(X;|lx1,...,%i—1,%it1,-..,%n,€). Butin Bayes nets, we know
that: P(X;|z1,...,Ti—1,Tit+1,...,2Zn) = P(X;|MB(X;))
where M B(X;) is the Markov blanket of X; (parents, children and
spouses). So we only need to figure out P(X;|M B(X;)).

LetY;,5 = 1,...,k be the children of X;
We can show (problem set 3) that:

P(x;|Parents(X;)) _—WHH P(Y;|Parents(Y;))

Ma\. P(z|Parents(X;)) ——WHH P(Y;|Parents(Y;))

(2



Example

. Generate afirstsample: C =0, R=0,5=0,W = 1.

. Pick R, sample it from P(R|C = 0,W = 1,5 = 0). Suppose
we get R = 1.

. OurnewsampleisC =0,R=1,5=0,W =1



Implementing Gibbs sampling

e Note that the samples we get in the beginning of the sampling
are “unlikely”. We need to run Gibbs sampling for a while before
we start getting “good” samples. This stage is called “burn in”

e Ways of implementing:

— Run M times starting from different states. Each time, run
for N steps, for some fairly large N, then take just one
resulting sample. Has a good chance of covering the space
of possible samples

— Start just from one sample, run for a really long time, then
take M samples. In this case, the samples will not be
iIndependent (but the correlation is weak)

— A hybrid of the two



Analyzing Gibbs sampling

e Consider the variables X1, ..., X, . Each possible assignment
of values to these variables is a state of the world, (x1,...,Zx).

e |n Gibbs sampling, we start from a given state
s = (x1,...,Tn). Based on this, we generate a new state,

s ={(x1,...,xh).
The new state only depends on the previous state, not on any
state that could have happened before!

e For any s, s, there is a well-defined probability of generating s’
If we are in s (what is that?)

Gibbs sampling constructs a Markov chain over the Bayes net



Markov chains

A Markov chain is defined by:

e A set of states S

e A starting distribution over the set of states p(s) = P(so
e A stationary transition probability p,,s = P(st+1 = s'|s:

So 781 —>...—=> 8t =7 St+1 — ...



Steady-state (stationary) distribution

Whatis P(st = j|so = 1)?

P(s1 =j|so =1) = pij
Muw?t — jls¢e = k)P(s¢ = k|so = 1)

P(st+1 = jlso = 1)

k
= ME&.WA& = k|sg = 1)
k

Under reasonable assumptions, this process converges to a unique

solution, called the steady-state distribution:

p (i) = lim P(X: =1|Xo)

t— o0

Note that p* (7) does not depend at all on the start state distribution



Sampling the steady-state distribution

The MC theory suggests a way of sampling the stationary
distribution:
® Set X; = ¢ for some arbitrary ¢
e Fort=1,...,M,ifs; = s, sample a value s’ for s;;1 based
ON Py’
® Return syy.

If M is large enough, this will be a sample from p*



Markov Chain Monte Carlo

e Construct a Markov Chain corresponding to the Bayes net
e Make sure that the chain has the right stationary distribution
e Simulate the chain for N steps to get a sample

Gibbs sampling is the simplest illustration of this idea.



Designing Markov Chains

How do we ensure that the Markov Chain has the “right” probability

distribution?

Look again at:

MES@ ME&%

Pij _ P (J) it ity i isfi
If P — (i) this equality is satisfied.

This gives us a condition that we can check locally!



