Lecture 3. Bayesian Networks

® An example
e DAGSs as representations of independence

® |-maps



Recall from last time: Conditional independence

Two variables X and Y are conditionally independent given Z if and

only if
P X=z|Y =y, Z=2)=P(X =z|Z =2),Vx,y,2
We denote thisby I(X,Y|Z2).

In this lecture we discuss the use of graphical representations to

capture independence properties.



A Bayes net example
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Using a Bayes net for reasoning (1)

Computing any entry in the joint probability table is easy:
P(b=1)P(e=0)P(a=1b=1,e =0)P(c =1|la =1)P(r = 0le = 0) = 0.0056
What is the probability that a neighbor calls?
P(c=1)= Y P(c=1,eb,r,a)=0.0568
e,b,r,a

What is the probability of a call in case of a burglary?

Plc=1b=1) = Ple=1,b=1) 2.,.Plc=1Lb=1r¢ra)
— — o waHHv B Momﬁ@wAQQNwHHu@uﬁv@v

This is causal reasoning or prediction



Using a Bayes net for reasoning (2)

Suppose we got a call. What is the probability of a burglary?

Pb=1lc=1) = Ple= HN_U@QHM%@ =1 _ 0.1034

What is the probability of an earthquake?

Ple=1c=1) = 1= ﬁ?ﬂﬂt%@ =Y _ 0.02688

This is evidential reasoning or explanation
What happens to the probabilities if the radio announces an

earthquake?
Ple=1lc=1,r=1)=0.9993and P(b=1le=1,r = 1) = 0.02688

['his is called explaining away. It is a special case of inter-causal reasoning



Using DAGSs to represent independencies

e Graphs have been proposed as models of human memory and
reasoning on many occasions (e.g. semantic nets, inference
networks, conceptual dependencies)

e There are many efficient algorithms that work with graphs, and

efficient data structures



Markov assumption

Given a graph G, what sort of independence assumptions does it
imply?

E.g. Consider the alarm network:

Earthquake Burglary

We have I(E, B), I(R,{B,A,C}|E)and I(C,{E, B, R}|A).
How about node A?

In general a variable is independent of its nhon-descendents given its
parents.



Bayesian network structure

A Bayesian network structure is a directed acyclic graph (DAG) G
whose nodes represent random variables X1, ..., X,,. GG encodes

the following conditional independence assumptions:
I (X, Nondescendents(X;)|Parents(X;)),Vi=1,...n

We denote this set of independence assumption by M arkov(G).



I-Maps

A Bayesian network structure is an I-map (independence map) of

a distribution P if P satisfies the independence assumptions

Markov(G).

Example: Consider all possible graph structures over 3 variables:

1T

X Y Pi(X,Y) P (X,Y)
x=0 y=0 0.08 x=0 y=0 0.4
x=0 y=1 0.32 x=0 y=1 0.3
x=1 y=0 0.32 x=1 y=0 0.2
x=1 y=1 0.48 x=1 y=1 0.1

Which graph is an I-map for P1? How about P>?




Factorization

Given that G is an I-map for P, can we simplify the representation
of P?

Example: If G contains two unconnected vertices X and Y, and G
is an I-map for P, then we have I(X,Y’) and we can write
P(X,Y)=P(X)P(Y).

Let G be a Bayesian network structure over variables X1, ..., X,.

We say that a distribution P factorizes according to G if P can be
expressed as a product:

P(Xi,...,Xn) = E P(X;|Parents(X;))
i=1
The individual factors P(X;|Parents(X;)) are called local

probabilistic models or conditional probability distributions



Bayesian network definition

A Bayesian network is a Bayesian network structure (G together with
a distribution P that factorizes over G, where P is specified as the

set of conditional probability distributions associated with G’s nodes.
Example: The Alarm network.



Factorization theorem

If G is an I-map of P, then P factorizes according to G:

n

P(X1,...,X,) = E P(X;|Parents(X;))

=1

Proof: By the chain rule,

P(X1,...,Xn) =]]_, P(Xi|X1,...,X;_1). Without loss of
generality, we can order the variables X; according to G. From this
assumption, Parents(X;) C {X1,..., X;—1}. This means that
{X1,...,Xi—1} = Parents(X;) U Z, where

Z C Nondescendents(X;). Since G is an I-map, we have

I(X;, Nondescendents(X;)|Parents(X;)), so:

P(X;|X1,...,X;—1 = P(X;|Z, Parents(X;)) = P(X;|Parents(X;))

and the conclusion follows.



Factorization example

Earthquake Burglary

The factorization theorem allows us to represent P(C, A, R, E/, B)

as.

P(C,A,R,E,B)=P(B)P(FE)P(R|E)P(A|E,B)P(C|A)
Instead of:

P(C,A,R,E,B) = P(B)P(E|B)P(R|E, B)P(A|E, B,R)P(C|A, E, B, R)



Complexity of factorized representations

o If |Parents(X;)| < k, Vi, and we have binary variables, then
every conditional probability distribution will require < 2k
numbers to specify

e The whole joint distribution can then be specified with < n - 2k
numbers, instead of 2"

e The savings are big if the graph is sparse (k < n).



Converse of the factorization theorem

If P(X1,...,Xn) = ||, P(X:|Parents(X;) the G is an I-map of
P.

Proof: will be on the next homework



Minimal I-maps

e The fact that a DAG G is an I-map for P might not be very
useful.
E.g. Complete DAGs (where all arcs that do not create a cycle
are present) are I-maps for any distribution (because they do
not imply any independencies).

e A DAG (G is a minimal I-map of P if G:
1. GGis an I-map of P
2. If G’ C G then G’ is not an I-map for P



Constructing minimal I-maps

The factorization theorem suggests an algorithm:
1. Fix an ordering of the variables: X1,..., X,
2. For each X, select Parents(X;) to be the minimal subset of
{X1,...,Xi—1} such that
I(X:,{X1,...,Xi—1} — Parents(X;)|Parents(X;)).

This will yield a minimal I-map



Non-uniqueness of the minimal I-map

e Unfortunately, a distribution can have many minimal I-maps,
depending on the variable ordering we choose!
e The initial choice of variable ordering can have a big impact on

the complexity of the minimal I-map:

Earthquake Burglary Earthquake -— Burglary

Ordering: £/, B, A, R,C Ordering:C, R, A, E, B

e A good heuristic is to use causality in order to generate an

Example:

ordering.



