Lecture 3: Bayesian Networks

- An example
- DAGs as representations of independence
- I-maps

Recall from last time: Conditional independence

only if Two variables X and Y are conditionally independent given Z if and

$$P(X = x | Y = y, Z = z) = P(X = x | Z = z), \forall x, y, z$$

We denote this by I(X, Y|Z).

capture independence properties. In this lecture we discuss the use of graphical representations to

A Bayes net example

Using a Bayes net for reasoning (1)

Computing any entry in the joint probability table is easy:

$$P(b=1)P(e=0)P(a=1|b=1,e=0)P(c=1|a=1)P(r=0|e=0) \approx 0.0056$$

What is the probability that a neighbor calls?

$$P(c=1) = \sum_{e,b,r,a} P(c=1,e,b,r,a) = 0.0568$$

What is the probability of a call in case of a burglary?

$$P(c=1|b=1) = \frac{P(c=1,b=1)}{P(b=1)} = \frac{\sum_{e,r,a} P(c=1,b=1,e,r,a)}{\sum_{c,e,r,a} P(c,b=1,e,r,a)}$$

This is causal reasoning or prediction

Using a Bayes net for reasoning (2)

Suppose we got a call. What is the probability of a burglary?

$$P(b=1|c=1) = \frac{P(c=1|b=1)P(b=1)}{P(c=1)} = 0.1034$$

What is the probability of an earthquake?

$$P(e=1|c=1) = \frac{P(e=1|b=1)P(b=1)}{P(c=1)} = 0.02688$$

This is evidential reasoning or explanation

earthquake? What happens to the probabilities if the radio announces an

$$P(e=1|c=1,r=1)=0.9993$$
 and $P(b=1|e=1,r=1)=0.02688$

This is called **explaining away**. It is a special case of **inter-causal reasoning**

Using DAGs to represent independencies

- Graphs have been proposed as models of human memory and networks, conceptual dependencies) reasoning on many occasions (e.g. semantic nets, inference
- There are many efficient algorithms that work with graphs, and efficient data structures

Markov assumption

imply? Given a graph G, what sort of independence assumptions does it

E.g. Consider the alarm network:

How about node A? We have I(E, B), $I(R, \{B, A, C\} | E)$ and $I(C, \{E, B, R\} | A)$.

In general a variable is independent of its non-descendents given its

parents.

Bayesian network structure

the following conditional independence assumptions: whose nodes represent random variables X_1,\ldots,X_n . G encodes A Bayesian network structure is a directed acyclic graph (DAG) G

$$I(X_i, Nondescendents(X_i)|Parents(X_i)), \forall i = 1, ..., n$$

We denote this set of independence assumption by Markov(G).

I-Maps

a distribution P if P satisfies the independence assumptions A Bayesian network structure is an I-map (independence map) of Markov(G).

Example: Consider all possible graph structures over 3 variables:

1 1 1 1 1	×=1	×=1	x=0	x=0	×		
- - -	<u>y=1</u>	y=0	y=1	y=0	Y	_	
	0.48	0.32	0.32	0.08	$P_1(X,Y)$	Y	X
					ı	K	X
-	×=1	×= <u>1</u>	x =0	x=0	×	(Y)	\rightarrow \times
ל ס _	y=1	y=0	y=1	y=0	Y		
	0.1	0.2	0.3	0.4	$P_2(X,Y)$		

Which graph is an I-map for P_1 ? How about P_2 ?

Factorization

Given that G is an I-map for P, can we simplify the representation

is an I-map for P, then we have I(X,Y) and we can write Example: If G contains two unconnected vertices X and Y, and G

$$P(X,Y) = P(X)P(Y).$$

We say that a distribution P factorizes according to G if P can be expressed as a product: Let G be a Bayesian network structure over variables X_1, \ldots, X_n .

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | Parents(X_i))$$

probabilistic models or conditional probability distributions The individual factors $P(X_i|Parents(X_i))$ are called **local**

Bayesian network definition

a distribution P that factorizes over G, where P is specified as the set of conditional probability distributions associated with G's nodes. A Bayesian network is a Bayesian network structure G together with Example: The Alarm network.

Factorization theorem

If G is an I-map of P, then P factorizes according to G:

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | Parents(X_i))$$

Proof: By the chain rule,

 $\{X_1,\ldots,X_{i-1}\}=Parents(X_i)\cup Z$, where assumption, $Parents(X_i) \subseteq \{X_1, \ldots, X_{i-1}\}$. This means that generality, we can order the variables X_i according to G. From this $Z\subseteq Nondescendents(X_i)$. Since G is an I-map, we have $P(X_1,...,X_n) = \prod_{i=1}^n P(X_i|X_1,...,X_{i-1})$. Without loss of $I(X_i, Nondescendents(X_i)|Parents(X_i))$, so:

$$P(X_i|X_1,\ldots,X_{i-1}=P(X_i|Z,Parents(X_i))=P(X_i|Parents(X_i))$$

and the conclusion follows.

Factorization example

The factorization theorem allows us to represent P(C,A,R,E,B)

as:

$$P(C, A, R, E, B) = P(B)P(E)P(R|E)P(A|E, B)P(C|A)$$

instead of:

$$P(C, A, R, E, B) = P(B)P(E|B)P(R|E, B)P(A|E, B, R)P(C|A, E, B, R)$$

Complexity of factorized representations

- If $|Parents(X_i)| \leq k, \forall i$, and we have binary variables, then every conditional probability distribution will require $\leq 2^k$ numbers to specify
- The whole joint distribution can then be specified with $\leq n \cdot 2^k$ numbers, instead of 2^n
- The savings are big if the graph is sparse $(k \ll n)$.

Converse of the factorization theorem

If $P(X_1,\ldots,X_n)=\prod_i P(X_i|Parents(X_i)$ the G is an I-map of

Proof: will be on the next homework

Minimal I-maps

- The fact that a DAG G is an I-map for P might not be very useful.
- not imply any independencies). are present) are I-maps for any distribution (because they do E.g. Complete DAGs (where all arcs that do not create a cycle
- A DAG G is a minimal I-map of P if G:
- 1. G is an I-map of P
- 2. If $G' \subseteq G$ then G' is not an I-map for P

Constructing minimal I-maps

The factorization theorem suggests an algorithm:

- 1. Fix an ordering of the variables: X_1, \ldots, X_n
- 2. For each X_i , select $Parents(X_i)$ to be the minimal subset of

$$\{X_1,\ldots,X_{i-1}\}$$
 such that

$$I(X_i, \{X_1, \ldots, X_{i-1}\} - Parents(X_i) | Parents(X_i)).$$

This will yield a minimal I-map

Non-uniqueness of the minimal I-map

- depending on the variable ordering we choose! Unfortunately, a distribution can have many minimal I-maps,
- The initial choice of variable ordering can have a big impact on the complexity of the minimal I-map:

Example:

A good heuristic is to use causality in order to generate an

Ordering: E, B, A, R, C

Ordering: C, R, A, E, B

ordering.