Lecture 17: Reinforcement Learning - Part 1

{> The reinforcement learning problem
{> Brief history and example applications

> What to learn: policies and value functions

Control Learning

Consider learning to choose actions, e.g.,

e Robot learning to dock on battery charger
® Learning to choose actions to optimize factory output
e |earning to play Backgammon

Specific problem characteristics:

e Delayed reward

e Opportunity for active exploration

e There may not exist an adequate teacher!

e May need to learn multiple tasks using the same

sensors/effectors

Supervised Learning

Training Info: Desired (target) Output

Y

| nputs

—

Supervised
Learning

Outputs

|'

Error = (target output - actual output)

Reinforcement Learning (RL)

Training Info: Evaluations (rewards/penalties)

Y

Inputs Reinforcement | Outputs: actions

— |caning [— B

Obijective: Get as much reward as possible

Key Features of RL

The learner is not told what actions to take

It find finds out what to do by trial-and-error search
Possibility of delayed reward: sacrifice short-term
gains for greater long-term gains

Need to explore and exploit

The environment is stochastic and unknown

Brief History

Minsky’s PhD thesis (1954). Stochastic Neural-Analog Reinforcement
Computer

Samuel’s checkers player (1959)

ldeas about state-action rewards from animal learning and psychology
Dynamic programming methods developed in operations research
(Bellman)

Died down in the 70s (along with much of the learning research)
Temporal difference (TD) learning (Sutton, 1988), for prediction
Q-learning (Watkins, 1989), for control problems

TD-Gammon (Tesauro, 1992) - the big success story

Evidence that TD-like updates take place in dopamibne neurons in the
brain (W.Schultz et.al, 1996)

Currently a very active research community, with links to different fields

sSuccess Stories

TD-Gammon (Tesauro, 1992)

Elevator dispatching (Crites and Barto, 1995): better than industry
standard

Inventory management (Van Roy et. al): 10-15% improvement over
industry standards

Job-shop scheduling for NASA space missions (Zhang and Dietterich,
1997)

Dynnamic channel assignement in cellular phones (Singh and
Bertsekas, 1994)

Learning walking gaits in a legged robot (Huber and Grupen, 1997)
Robotic soccer (Stone and Veloso, 1998) - part of the world-champion

approach

All these are large, stochastic optimal control problems:
e Conventional methods require the problem to be
simplified
e RL just finds an approximate solution!
An approximate solution can be better than a perfect

solution to a simplified problem

Elements of RL

e Policy: what to do
A mapping from states to actions, saying what action
to take in each state
e Reward: what is good
A numerical signal coming from the environment
e Value: what is good because it predicts reward
This is what we want to compute
e Model: what follows what

Generally unknown, can be learned from experience

TD-Gammon (Tesauro, 1992-1995)

predicted probability
of winning, V;

TD error, Viyq— Vi lmw

backgammon position (198 input units)

~— T
white pieces move
24 23 22 21 20 19 18 17 16 15 14 13 OOCDﬁmﬁO_OO—AE_mm
HIS m S
5 6

1 2 3 4

black pieces
move clockwise

TD-Gammon: Training Procedure

Immediate reward:
e +100 if win
e -100 if lose

e (for all other states

Trained by playing 1.5 million games against itself

Now approximately equal to best human player

The Power of Learning from Experience

20% TD-Gammon
self-pla

Tesauro, 1992

performance
against

gammontool _— Neurogammon
same network, but
50% trained from 15,000

expert-labeled examples

_ _ I _ _
0 10 20 40 80

hidden units

Expert examples are expensive and scarce

Experience is cheap and plentiful!

Reinforcement Learning Problem

,QS\Q.,Q QO._”_O_J

state r
t %

“A levn
' s.«1 | Environment
I _m 1 k

e At each discrete time ¢, the agent observes state
s¢ € S and chooses action a; € A
® Then it receives an immediate reward 7;41 and the

state changes to Sy

Markov Decision Processes (MDPs)

:_ C hi C 4o 4.3

Assume:

e Finite set of states S (we will lift this later)

e Finite set of actions A(s) available in each state s

e v = discount factor for later rewards (between O and
1, usually close to 1)

e Markov assumption: s;41 and ;41 depend only on

St, a; and not on anything that happened before ¢

Models for MDPs

e 1 = expected value of the immediate reward if the
agent is in s and does action a
e p. ., = probability of going from s to s’ when doing

action a

These form the model of the environment, and are

usually unknown

Agent’s Learning Task

Execute actions in environment, observe results, and

learn action policy 7 : S — A that maximizes

Elrypn + i + Qmﬁt& + .

from any starting state in S

where 0 < « < 1 is the discount factor for future
rewards

Note that the target functionis 7 : S — A but we have
no training examples of form (s, a)

Training examples are of form ((s, a), r...)

Value Function

For each possible policy 7 that the agent might adopt, we can

define an evaluation function over states:

<ﬁAmv — mﬁﬁﬂi'u + YTre+2 + Q\wﬂw._'w —+ ... _ St = mw
= FEn Mq&ﬁit | st =3
i=0

where r¢41, Tt4+2, .. . are generated by following policy 7 starting
at state s

The task is to learn the optimal policy 7*

*

™ = argmax V7" (s), (Vs)

What to Learn

We might try to have agent learn the evaluation function
V™ (which we write as V*)

It could then do a lookahead search to choose best

action from any state s because
" (s) = argmax[r(s,a) + 7) _ piy V" (s')]
m\

This works well if agent knows the model 7, p

But when it does not know the model, it cannot choose

actions this way

Action-Value Function

Define new function very similarto V/'*

Q(s;a) = Ex{rivr +yre2 + -+ | 8t = 8,44 = a}

If agent learns (), it can choose optimal action even

without knowing the model!

7 (s) = arg max Q(s,a)

