Lecture 6: Learning - Artificial Neural Networks

> Overview

» Perceptron learning

& Sigmoid Units

¢ Multi-layered feed-forward neural networks

> Backpropagation

Consider the human brain

e Contains ~ 10'° neurons, each of which may have up to ~ 10*7° in-
put/output connections

e Each neuron is fairly slow, with a switching time of © 1 milisecond

e Yet the brain is very fast and reliable at computationally intensive tasks
(e.g. vision, speech recognition, knowledge retrieval)

e Although computers are at least 1 million times faster in raw switching
speed!

e The brain is also more fault-tolerant, and exhibits graceful degradation
with damage

e Maybe this is due to its architecture, which ensures massive parallel com-
putation!

Connectionist Models

Based on the assumption that a computational architecture similar to the
brain would duplicate (at least some of) its wonderful abilities.

Properties of artificial neural nets (ANNs):
Many neuron-like threshold switching units
Many weighted interconnections among units
Highly parallel, distributed process
Emphasis on tuning weights automatically

MANY different kinds of architectures, motivated both by biology and
mathematics/efficiency of computation

eullRY Indu|
10SUSS ZEX0E

(€661 ‘nesprourod) NNIATV :o[durexy

What is a neural network?

A graph of simple individual units (“neurons”)

The edges of the graph are links on which the neurons can send data to each
other

The edges have weights, which multiply the data that is sent
Learning = choosing weight values for all edges in the graph
Sometimes learning means adding/deleting nodes

In the vast majority of applications, the graph is acyclic and directed, and
the the learning algorithm is backpropagation

When to Consider Neural Networks

{ Input is high-dimensional discrete or real-valued (e.g. raw sensor input)
> Output is discrete or real valued, or a vector of values

> Possibly noisy data

¢ Training time is unimportant

> Form of target function is unknown

> Human readability of result is unimportant

Examples:

Speech phoneme recognition [Waibel]
Speech synthesis [Nettalk]

Image classification [Kanade, Baluja, Rowley]
Automatic driving [Pomerleaul]

Financial prediction

Perceptron

= -
= O

1if 2w x>0
0= i=0 17
-1 otherwise

1 if wg+ w1+ - +wypxy, >0
—1 otherwise.

o(T1,...,%y) =

Sometimes we will add a fixed component xy = 1 to all the instances and
use simpler vector notation:

lifw-2>0
—1 otherwise.

Decision Surface of a Perceptron

XN A XN A
+
+
i N i
* /
Xt Xt
} - +
(a) (b)

Represents some useful functions:
What weights represent g(x1,x2) = AN D(x1,x9)7

But some functions not representable (E.g. not linearly separable)
Therefore, we will want networks of these...

Perceptron training rule

W; < W; + DQ&
where
Aw; = n(t — o)x;

Where:
t = c(%) is target value
o Is perceptron output
n is small constant (e.g., 0.1) called learning rate

Can prove it will converge if training data is linearly separable and 7 suffi-
ciently small

Fails to converge (oscillates) if the data is not linearly separable

Linear Units

We would like to have an algorithm that converges when the training exam-
ples are not separable too

|deally, it would converge to a “best fit" or “minimum error” on the training
data

|dea: consider just a linear unit, with no threshold:
0= Wy + WiTy+ +*++ + WyrTy

Goal: learn w;s that minimize the squared error

I
E[w] = M&Wb@g — ong

where D is set of training examples

Hill-climbing search for a good set of weights!

Gradient Descent

~¢
IS etes
o aestigetiets
R
= AT S S SS

Gradient: VE[W] = TE oE ,, OE

Training rule:

oF
%8&

oOF
@g&

Gradient Descent

Gradient Descent

Gradient-Descent(training examples,n)

Fach training example is a pair of the form (Z,t), where T is the
vector of input values, and t is the target output value. n s the
learning rate (e.g., .05).

1. Initialize each w; to some small random value
2. Until the termination condition is met, Do:

(a) Initialize each Aw; to zero.
(b) For each (Z,t) in training examples, Do:
I. Input the instance & to the unit and compute the output o
ii. For each linear unit weight w;, Do
Aw; < Aw; +n(t — o)x;
(c) For each linear unit weight w;, Do:

W; <— W; + D\E&

Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent: repeat until satisifed:

1. Compute the gradient V Ep]
2. W +— W — dqmbT&

Incremental mode Gradient Descent: repeat until satsified:

For each training example d in D

1. Compute the gradient V E,|]
2. W < W — nV E4[u]

Ep|i] = WQM (t— o0)? Efi] = ~(ty — 04)?

m
>
DN | —

Incremental Gradient Descent can approximate Batch Gradient Descent
arbitrarily closely if n made small enough

Summary

Perceptron training rule guaranteed to succeed if:

e [raining examples are linearly separable

e Sufficiently small learning rate n
Linear unit training rule uses gradient descent:

e Guaranteed to converge to hypothesis with minimum squared error
e Given sufficiently small learning rate 7
e Even when training data contains noise

e Even when training data not separable by H

Building networks of individual units

Perceptrons have very simple decision surfaces

If we connect them into networks, the error surface for the network is not
differentiable (because of the hard threshold)

So we cannot apply gradient descent to find a good set of weights...
Networks of linear units are not satsifactory either (why?)
We would like a “soft” threshold!

Nicer math, and closer to biological neurons...

Sigmoid Unit

o(x) is the sigmoid function

1
1+e®

Nice property: gwma =o(z)(1 —o(x))

We can derive gradient decent rules to train

e One sigmoid unit

o Multilayer networks of sigmoid units — Backpropagation

Error Gradient for a Sigmoid Unit

o _ o

_ 1 9
dui ~ B 2459\ O
_ WM W t, — vm
B 2 d Q\E@. d vd
1 0
= M WMQ& — O&v %‘8&@& — O&V
0
= 300 (5,
B dog Onety
B WAS %) Onety; Ow;

Where (see figure)

n
\me& = .Muo W;T;
1=

Error Gradient for a Sigmoid Unit (2)

But we know:
O0oq Oo(netq)

Onety; Onely 0a(l = 04)
Onety O(W - Zy)
ow; - ow; — tid
So:
oOF

Backpropagation Algorithm

Initialize all weights to small random numbers.

Until satisfied, Do
For each training example, Do

1. Input the training example to the network and compute the network out-
puts

2. For each output unit &
%w — Owﬁ — va@w — va
3. For each hidden unit A

op < op(l —on) X wply
k€outputs

4. Update each network weight w;;
Wij < Wij + d&..&.&.
;; is the input from unit ¢ into unit j (so for the output neurons, the x's
are the signals received from the hidden layer neurons)

Why this algorithm?

For the output units, this is just like the jupddate for a single neuron

The only difference is that now the error function for the whole network is
defined over all the outputs:

1
E(@) = - tka — Oka)”
Agv 2 &WUU wmowﬁ:wmﬁ d Q\av

where ¢4 and og, are the target and output values associated with the £th
output unit and dth training example

For the hidden units, we have to compute how much they influence the
overall error

But they only influence the error of the units immediately downstream
from them!

The rest is a matter of applying the chain rule...

Convergence of Backpropagation

Gradient descent to some local minimum

e Perhaps not global minimum...

e Can be much worse than global minimum

e There can be MANY local minima (Auer et al, 1997)
Partial solution: train multiple nets with different inital weights
Restarting is a standard trick in hill-climbing algorithms
More tricks:

e [nitialize weights near zero

e [herefore, initial networks near-linear

e Increasingly non-linear functions possible as training progresses

o Make sure the units start with different weights, to break symmetry!

Expressiveness of ANNSs

e Every boolean function can be represented by a network with single hidden
layer, but might require exponential (in number of inputs) hidden units

e Every bounded continuous function can be approximated with arbitrarily
small error, by a network with one, sufficiently large hidden layer [Cybenko

1989; Hornik et al. 1989]

e Any function can be approximated to arbitrary accuracy by a network
with two hidden layers [Cybenko 1988].

Inductive bias is roughly smooth interpolation between points

More on Backpropagation

e Gradient descent over entire network weight vector
e Easily generalized to arbitrary directed graphs (not only two layers)

e In theory it will find a local, not necessarily global error minimum, but in
practice, it often works well (can run multiple times)

e Minimizes error over training examples
Will it generalize well to subsequent examples?

See the overfitting issue...

e Training can take thousands of iterations — VERY SLOW!

But using network after training is very fast

A target function:

Example

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned??

Learning Hidden Layer Representations

Inputs Outputs

Learned hidden layer representation:

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .15 .99 .99 — (01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .01 .11 .88 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Evolution during Training

Sum of squared errors for each output unit
I

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

500

1500

2000

put 01000000

Hidden unit encoding for in|

500

1000

1500

Weights from inputs to one hidden unit

500

2000

2500

Error

Error

0.01
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

‘Il—l

Overfitting in ANNSs

Error versus weight updates (example 1)
I I I A
Training set error * -
Validation set error +

1 I I)

0 5000 10000 15000 20000
Number of weight updates
Error versus weight updates (example 2)

ﬂ}‘ 1 1 1 A

- ... Training set error . -
e Validation set error +

. fv -

- +++1+iﬁi+¥1+1+i¢+i¢i+ -

. +I++I++I+i+

L . fgfix -

] . 5

L ~— -
0 1000 2000 3000 4000 5000 6000

Number of weight updates

