Lecture 4: Decision Trees

> What is a decision tree?
{» Constructing decision trees

¢ Dealing with noise

Decision tree example (1)

Day Outlook Temperature Humidity Wind PlayTennis

D1

D2

D3

D4

D5

D6

D7

D8

D9
D10
D11

D14

Sunny
Sunny

Overcast

Rain
Rain
Rain

Overcast

Sunny
Sunny
Rain

Sunny

D12 Overcast
D13 Overcast

Rain

Hot
Hot
Hot
Mild
Cool
Cool
Cool
Mild
Cool
Mild
Mild
Mild
Hot
Mild

High
High
High
High
Normal
Normal
Normal
High
Normal
Normal
Normal
High
Normal

High

Weak
Strong
Weak
Weak
Weak

Strong
Strong
Weak
Weak
Weak
Strong
Strong
Weak

Strong

No
No
Yes
Yes
Yes
No
Yes
No
Yes
Yes
Yes
Yes
Yes
No

Discover a “rule” for the PlayTennis predicate!

Decision tree example (2)

QOutlook

I

Sunny Overcast Rain
7 | S
Humidity Yes Wind
I_@:\/zQBm_ w83><8x
/ \ / \
No Yes No Yes

A decision tree is:

a set of nodes, where each node tests the value of an attribute and
branches on all possible values
a set of leaves, where each leaf gives a class value

Suppose we get a new instance:
Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong

How do we classify it?

Real example: the “hepatitis” task

liver_firm = yes
\ /
spiders = no spleen_palpable = no
age < 40.00 live (65) bilirubin < 1.40 albumin < 2.90
\/ = \/ \/
live (4 die (1 live (11) die (6 die (9 live (37)

die A v __<m 3 live @ live @ die @

Decision trees as logical representations

Each decision tree has an equivalent representation in propositional logic.
For example:

Outlook
unny Overcast Rain
Humidity <78 Wind
High Normal Srong Weak
No Yes No Yes

corresponds to:

(Outlook=Sunny A Humidity=Normal)
V (Outlook=Overcast) V (Outlook=Rain A Wind=Weak)

What is easy/hard for decision trees to represent ?

How would we represent:

A, V, XOR

(AAB)V (C A D)

M of N

Natural to represent disjunctions, hard to represent functions like parity, XOR
(need exponential-size trees).

Sometimes duplication occurs (same subtree on various paths).

When would one use a decision tree?

e Classification problems: instances come as attribute-value pairs, target
function is discrete valued

e Disjunctive hypothesis may be required
e Possibly noisy training data, missing values
e Need to construct a classifier fast

e Need an understandable classifier
Existing applications include:

e Equipment/medical diagnosis
e Credit risk analysis
e Learning to fly

e Scene analysis and image segmentation

Standard algorithm developed in the '80s, now commercially available pack-
ages (C4.5). Quite successful in practice

Decision tree construction

Given a set of labelled training instances:

1. If all the training instances have the same class, create a leaf with that
class label and exit.

Pick the best attribute to split the data on
Add a node that tests the attribute
Split the training set according to the value of the attribute

A

Recurse on each subset of the training data
This is the ID3 algorithm (Quinlan, 1983) and is at the core of C4.5

Which attribute is best?

Consider we have 29 positive examples, 35 negative ones, and we are con-
sidering two attribues, that would give the following splits of instances:

[29+, 35-] Al1="? [29+, 35-] A2="

t

[21+, 5-] [8+, 30-] [18+, 33-] [11+, 2-]

Intuitively, we would like an attribute that separates the training instances
as well as possible

We need a mathematical measure for the “purity” of a set of instances

Entropy

Consider:
S - a sample of training examples
p4 is the proportion of positive examples in S
p_ is the proportion of negative examples in S

Entropy measures the impurity of S:

Entropy(S) = —pg logy ps — pe logs pe

1.0 T

05 1

Entropy(S)

Why this formula?

Suppose you want to guess if a number is in a set S, and you can ask yes/no
questions.

What is the best questioning strategy?

Pick the “middle” of S and ask if the number is less than that, then pick
the middle of the remaining range etc.

You need log, |S| questions.

Now suppose that the number can be in one of two subsets P and N and
| am willing to tell you where to look. What is the expected number of
questions to ask?

pplogy |P| + pnlogy | N|

Why this formula? (2)

Now how much information is there in this case, compared with not knowing
anything?

pplogy |P| + pylogy |[N| — (pp + pn) logy | S|

If you compute it it comes to the entropy formula

Information Gain

Gain(S, A) = expected reduction in entropy due to sorting on attribute A

G S.A) = Ent S) —
Q@\DA) v n ﬁQ@@A v ema\@wmmﬁc _@_

Entropy(Sy)

[29+, 35-] Al="? [29+, 35-] A2="

t

[21+, 5-] [8+, 30-] [18+, 33-] [11+, 2-]

29 29 35 39

niropy(S) = =g loga o) = g o8 g
. A 33
Gain(S, Al) = Entropy(S) — @MN\:\?&EAMZ\»CV — @Mmz?oﬁ@aw?ﬁvv
: ol 13
Gain(S, A2) = Entropy(S) — QMMSSSESMZK@VV — @Mm\iﬁ&c@amﬁbwvv

In this case, Al wins

Decision tree construction as search

\
_ /
AN
AR 7:7
\\/I/r
\/>N
AN r;/
2y N
a

State space: all possible trees
Actions: which attribute to test
Goal: tree consistent with the training data
Depth-first search, no backtracking
Heuristic: information gain (or other variations)

Can get stuck in a local minimum, but is fairly robust (becase of the
heuristic)

Inductive bias of decision tree construction

e The hypothesis space is complete! We can represent any Boolean function
of the attributes

e So there is no absolute bias

e Outputs a single hypothesis: the “shortest” tree, as anticipated by the
information gain

e Because there is no backtracking, it is subject to local minima

e But because the search choices are statistically based, it is robust to noise
in the data

o Preference bias: prefer shorter (smaller) trees; prefer trees that
place attributes with high information gain close to the root

Occam’s Razor: Why prefer short hypotheses?

Pro:

e There are fewer short hypothezses than long hypotheses

e So if we find one that fits the data, it is less unlikely to be a conincidence

Con:

e There are many ways to define short hypotheses (e.g. all trees with prime
numbers of nodes)

e So what is so special about the size of the hypotheses?

A formal answer top this question can be given using the universal distribution
(more about this later).

Dealing with noise in the training data

Noise is inevitable!

e Values of attributes can be misrecorded
e Values of attributes may be missing

e [he class label can be misrecorded

What happens when adding a noisy example?

Sunny, Hot, Normal, Strong, PlayTennis = No

Outlook

I

Sunny Overcast Rain
\ /
Humidity Yes Wind
Hi @:\/ZQ mal m:o:@><<8x
/ \ / \
No Yes No Yes

The tree grows unnecessarily!

Overfitting

Consider error of hypothesis i over
Training data: erroryqin(h)
Entire distribution D of data: errorp(h)

Hypothesis i overfits training data if there is an alternative hypothesis A’
such that

errorirain(h) < errory.qin(h') and errorp(h) > errorp(h’)

This is a general problem for all supervised learning methods

Overfitting in decision trees

0.9 r _ _ _ ! ! ! ! ! ! 1
0.85
0.8
0.75

0.7 -

Accuracy

0.65 -

0.6 1 Ontraining data —— -
On test data ----

0.55 - -

O. m _l 1 1 1 1 1 1 1 1 1 J
0 10 20 30 40 50 60 70 80 90 100

Size of tree (number of nodes)

As the tree grows, the accuracy degrades, because the algorithm is finding
irrelevant attributes.

Do not believe anyone’s results unless they report them on
separate training and test sets!

Avoiding overfitting

1. Stop growing when further splitting the data does not yield a statistically
significant improvement

2. Grow a full tree, then prune the tree, by eliminating nodes
The second approach has been more successful in practice
How to select the “best” tree:

1. Measure performance over training data only

2. Measure performance over separate validation data set

3. Minimum description length principle: minimize

size(tree) + size(misclassi fications(tree))

The second one (training and validation set) is the most common.

Example: Reduced-Error Pruning

Split data into training and validation set

Do until further pruning is harmful:

1. Evaluate impact on wvalidation set of pruning each possible node (plus
those below it)

2. Greedily remove the one that most improves validation set accuracy

Produces smallest version of most accurate subtree

09 r 1 1 1 1 1 1 1 1 1 l
0.85 -
0.8 r

075 -

g o7/)
=
8

< 065 ¥ B

06 - Ontraining data —— -

, On test data ----
055 - On test data (during pruning) ----)
0.5 r ! ! | | | ' ' , , r

0 10 20 30 40 50 60 70 80 90 100

Size of tree (number of nodes)

Example: Rule post-pruning

1. Convert the decision tree to rules

2. Prune each rule independently of the others, by removing preconditiitons
such that the accuracy is improved

3. Sort final rules in order of estimated accuracy

Currently the most frequently used method (e.g. C4.5)

C4.5 Builds a pessimistic estimate of the estimate from the accuracy on the
training set.

Advantages:

e Can prune attributes higher up in the tree differently on different paths

e There is no need to reorganize the tree if pruning an attribute that is
higher up

e Most of the time people want rules anyway, for readability

How do we evaluate the accuracy of a decision tree

A general approach, that we will use for other classifiers as well, is k-fold
cross-validation

1. Split the training data into k partitions (folds), ensuring that the class
distribution is roughly the same in each partition

2. Repeat k£ times:

(a) Take one fold to be the test set
(b) Take the remaining & — 1 folds to form the training set

(c) We train the decision tree on the training set, then measure Training Error;
and T'estError;

3. Report the average of T'rainingError; and the average of T'est Error;.

Most often £ = 10.

More about cross-validation

If for any reason we need a validation set, that will be kept separate from
the training and test sets

E.g. One fold is for testing, one for validation and the remaining £ — 2 for

training

If data is limited, an alternative method is leave-one-out cross-validation,
where we justkeep 1 example for testing.

If we are comparing different algorithms test them on the SAME folds!

