
Lecture 14: Particle-based inference: Gibbs sampling

• Gibbs sampling

• Markov chains

• Markov Chain Monte Carlo (MCMC) methods
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Recall: Particle-based inference

• Suppose we have evidence E = e and we want to know

p(Y |E = e) for some query variables Y

• Particle-based methods will generate particles and then

compute sufficient statistics to estimate this answer

• Likelihood weighting has an easy way of producing samples: go

through the Bayes net in the direction of the arcs, sample nodes

without evidence and set the value for evidence variables

• Since these samples are NOT from p(Y |E = e) each particle

must have a weight. The weights are used instead of counts in

the probability estimation.

• But these weights can get very small, and then we would need

to sample a lot of data to get good estimates.
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A different idea
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• Suppose we want to compute P (R|S = 1)

• We generate one sample, with the given evidence variables

instantiated correctly

• Then we keep changing it!

• If we are careful, we will get samples from the correct

distribution
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Gibbs sampling

1. Initialization

• Set evidence variables E, to the observed values e

• Set all other variables to random values (e.g. by forward

sampling, uniform sampling...)

This gives us a sample x1, . . . , xn.

2. Repeat (as much as wanted)

• Pick a non-evidence variable Xi uniformly randomly)

• Sample x′
i from p(Xi|x1, . . . , xi−1, xi+1, . . . , xn).

• Keep all other values: x′
j = xj , ∀j "= i

• The new sample is x′
1, . . . , x

′
n

3. Alternatively, you can march through the variables in some

predefined order
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Why Gibbs works in Bayes nets

• The key step is sampling according to

p(Xi|x1, . . . , xi−1, xi+1, . . . , xn). How do we compute this?

• In Bayes nets, we know that a variable is conditionally

independent of all others given its Markov blanket (parents,

children, spouses)

p(Xi|x1, . . . , xi−1, xi+1, . . . , xn) = p(Xi|MarkovBlanket(Xi))

• So we need to sample from p(Xi|MarkovBlanket(Xi))
• Let Yj , j = 1, . . . , k be the children of Xi. It is easy to show
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that:

p(Xi = xi|MarkovBlanket(Xi)) ∝ p(Xi = xi|Parents(Xi)) ·

·
kY

j=1

p(Yj = yj |Parents(Yj))
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Example
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1. Generate a first sample: C = 0, R = 0, S = 0,W = 1.

2. Pick R, sample it from p(R|C = 0,W = 1, S = 0). Suppose

we get R = 1.

3. Our new sample is C = 0, R = 1, S = 0,W = 1

4. ....

February 11, 2008 7 COMP-526 Lecture 14

Analyzing Gibbs sampling

• Consider the variables X1, . . . , Xn. Each possible assignment

of values to these variables is a state of the world, 〈x1, . . . , xn〉.

• In Gibbs sampling, we start from a given state

s = 〈x1, . . . , xn〉. Based on this, we generate a new state,

s′ = 〈x′
1, . . . , x

′
n〉.

• s′ depends only on s!

• There is a well-defined probability of going from s to s′.

Gibbs sampling constructs a Markov chain over the Bayes net
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Markov chains

• Suppose you have a system which evolves through time:

s0 → s1 → · · · → st → st+1 → . . .

• A Markov chain is a special case of such a system, defined by:

– A set of states S

– A starting distribution over the set of states

p0(s) = p(s0 = s). If the state space is discrete, this can be

represented as a column vector p0

– A stationary transition probability, specifying ∀s, s′ ∈ S,

pss′ = p(st+1 = s′|st = s). The Markov property here

means that p(st+1|st) = p(st+1|s0, . . . st).

• For convenience, we put these probabilities in a |S|× |S|

transition matrix T.
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Example of a Markov chain

• State space S = {0, 1}

• Transition matrix:

T =

2
4 (1 − p) p

q (1 − q)

3
5

• We can fix an initial probability distribution, e.g. p0 =

2
4 1/2

1/2

3
5
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Example: Single-server queue

• Consider a single checkout at the grocery store

– A single customer arrives at any given times step with

probability p

– The customer at the head of the line is served with

probability q on any given time step

– Multiple customers can arrive at the same time

• The state of the chain is given by the number of customers in

the queue

• There is a well-defined transition probability from any given

state to any other state, which can be computed from p and q

(what is it?)
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How does the chain evolve over time?

• Where will the chain be on the first time step, t = 1?

p(st+1 = s′) =
X

s

p(s0 = s)p(s1 = s′|s0 = s)

by using the graphical model for the first time step: s0 → s1.

• We can put this in matrix form as follows:

p
′
1 = p

′
0T −→ p1 = T

′
p0

where T′ denotes the transpose of T

• Similarly, at t = 2, we have:

p2 = T
′
p1 = (T′)2p0
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Steady-state (stationary) distribution

• By induction, the probability distribution over possible states at

time step t can be computed as:

pt = T
′
pt−1 = (T′)t

p0

• If limt→∞ pt exists, it is called the stationary or steady-state

distribution of the chain.

• If the limit exists, π = limt→∞ pt, then we have:

π = T
′π,

X
s∈S

πs = 1

• Under what conditions does a chain have a stationary

distribution?

• Does the equation π = T′π always have a unique solution?
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Not all chains have a stationary distribution

• If the chain has a purely periodic cycle, the stationary

distribution does not exist

• E.g. in the chain above, the system is always in one state on

odd time steps and the other state on even time steps, so the

probability vector pt oscillates between 2 values

• For the limit to exist, the chain must be aperiodic

• A standard trick for breaking periodicity is to add self-loops with

small probability
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Limit distribution may depend on the initial transition

• If the chain has multiple “components”, the limit distribution may

exist, but depend on a few initial steps

• E.g. if all transitions above have probability 0.5, there are two

possible stationary distributions: [0.5 0.5 0 0] and [0 0 0.5 0.5]

• Such a chain is called reducible

• To eliminate this, every state must be able to reach every other

state:

∀s, s′, ∃k > 0 s.t. p(st+k = s′|st = s) > 0
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Ergodicity

• An ergodic Markov chain is one in which any state is reachable

from any other state, and there are no strictly periodic cycles (in

other words, the chain is irreducible and aperiodic)

• In such a chain, there is a unique stationary distribution π,

which can be obtained as:

π = lim
t→∞

pt

This is also called the equilibrium distribution

• The chain reaches the equilibrium distribution regardless of p0

• The distribution can be computed by solving:

π = T
′π,

X
s

πs = 1
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Balance in Markov chains

• Consider the steady-state equation for a system of n states:

[π1π2 . . . πn] = [π1π2 . . . πn]

2
666664

1 −
P

i#=1 p1i p12 . . . p1n

p21 1 −
P

i#=2 p2i . . . p2n

. . . . . . . . . . . .

pn1 pn2 . . . 1 −
P

i#=n pni

3
777775

• By doing the multiplication, for any state s, we get:

πs = πs

0
@1 −

X
i&=s

psi

1
A +

X
i&=s

πipis =⇒ πs

X
i&=s

psi

X
i&=s

πipis

This can be viewed as a “flow” property: the flow out of s has to

be equal to the flow coming into s from all other states
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Detailed balance

• Suppose we were designing a Markov chain, and we wanted to

ensure a stationary distribution

• This means that the flow equilibrium at every state must be

achieved.

• One way to ensure this is to make flow equal between any pair

of states:

πspss′ = πs′ps′s

This gives us a sufficient condition for stationarity, called

detailed balance

• A Markov chain with this property is called reversible
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Mixing time

• Sometimes, instead of computing the stationary distribution of a

chain, we would like to sample from it

• Hence, it is useful to know for what value of t we have pt ≈ π

• This is called the mixing time of the chain

• There are different ways to measure the approximate difference

of these two distributions

• If the mixing time is “small” (e.g. compared to the number of

states in the chain) we say the chain is rapidly mixing
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Markov Chain Monte Carlo (MCMC) methods

• Suppose you want to generate samples from some distribution,

but it is hard to get samples directly

E.g., We want to sample uniformly the space of graphs with

certain properties

• You set up a Markov chain such that its stationary distribution is

the desired distribution

• Note that the ‘states” of this chain can be fairly complicated!

• You start at some state, let time pass, and then take samples

• For this to work we need to ensure that:

– the chain has a unique stationary distribution

– the stationary distribution is what we want

– we reach the stationary distribution quickly
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Sampling the equilibrium distribution

• We can sample π just by running the chain a long time:

– Set s0 = i for some arbitrary i

– For t = 1, . . . , M , if st = s, sample a value s′ for st+1

based on pss′

– Return sM .

If M is large enough, this will be a sample from π

• In practice, we would like to have a rapidly mixing chain, i.e. one

that reaches the equilibrium quickly
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Example: Random graphs

• Suppose you want to sample uniformly from the space of

graphs with v vertices and certain properties (e.g. certain

in-degree and out-degree bounds, cycle properties...)

• You set up a chain whose states are graphs with v vertices

• Transitions consist of adding or removing an arc (reversal too, if

the graphs are directed), with a certain probability

• We start with a graph satisfying the desired property.

• The probabilities are devised based on the distribution that we

want to reach in the limit.
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MCMC for sampling from a graphical model

• The states of the chain are instances, in which the evidence

variables are instantiated to their known values

• Transitions allow changing the value of a non-evidence variable

in the instance

• The stationary distribution has to be the conditional distribution

of the model given the evidence

• This is ensured by specifying the transition matrix of the chain

based on the original model.

• Gibbs sampling is an example of this approach
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Implementation issues

• The initial samples are influenced by the starting distribution, so

they need to be thrown away. This is called the burn-in stage

• Because burn-in can take a while, we would like to draw several

samples from the same chain

• However, if we take samples t, t + 1, t + 2..., they will be highly

correlated

• Usually we wait for burn-in, then take every nth sample, for

some n sufficiently large. This will ensure that the samples are

(for all practical purposes) uncorrelated
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Gibbs sampling as MCMC

• We have a set of random variables X = {x1 . . . xn}, with

evidence variables E = e. We want to sample from

p(X − E|E = e).

• Let Xi be the variable to be sampled, currently set to xi, and x̄i

be the values for all other variables in X − E − {Xi}

• The transition probability for the chain is: pss′ = p(x′
i|x̄i, e)

• Under mild assumptions on the original graphical model, the

chain is ergodic

• We want to show that p(X − E|e) is the stationary distribution
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Gibbs satisfies detailed balance

• We show that if we plug in p(X − E|e) as the stationary

distribution, detailed balance is satisfied

πspss′ = p(X − E|e)p(x′
i|x̄i, e)

= p(xi, x̄i|e)p(x′
i|x̄i, e)

= p(xi|x̄i, e)p(x̄i|e)p(x′
i|x̄i, e) (by chain rule)

= p(xi|x̄i, e)p(x′
i, x̄i|e) (backwards chain rule)

= ps′sπs′

• If the chain is ergodic, there is a unique stationary distribution,

and since p(X −E|e) satisfies the balance equation, it must be

the stationary distribution.
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