
Lecture 7: More on variable elimination

• The special case of trees: message passing

• Variable elimination as a graph operation

• Clique trees

• Junction trees
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Recall from last time

• Inference is the process of computing conditional probabilities

for query variables given evidence

• Variable elimination is an exact inference procedure based on

two ideas:

– Re-arranging the sums and products that need to be

computed

– Caching the result of intermediate computations

• The complexity is order n · 2k where n is the number of

variables in the network and k is the largest number of variables

present in a factor

• The worst-case is having large v-structures, where eliminating

the bottom node creates large factors.
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An interesting special case: Directed trees
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• Directed trees are such that their moral graph is a tree

• We can parameterize the corresponding undirected model by:

Ψ(root) = p(root) andΨ(xj , xi) = p(xj |xi)

for any nodes such that Xi is the parent of Xj
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From undirected to directed trees

• Any undirected tree can be converted into a directed one by

picking a root and directing arcs from there outwards

• We will parameterize an undirected tree by Ψ(xi), for all nodes

i, and Ψ(xi, xj), for all arcs (Xi, Xj)

• If we want to compute p(Y |E), we introduce the evidence

potential δ(xi, x̂i), for all evidence variables Xi ∈ E

• The potentials now become:

ψE(xi) =

8<
:

ψ(xi)δ(xi, x̂i) if Xi ∈ E

ψ(xi), otherwise
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Variable elimination on undirected trees
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• The query node becomes root

• Traverse the resulting tree depth-first

• A node can only be eliminated after all its children have been

eliminated

• What orderings arise in our example?
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Intermediate factors

Order: B,W,C,K,I,S
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• Consider nodes C and K, which are connected

• C will be eliminated before K

• When we eliminate C, and create factor mC , what potentials

will get out of the active list? What variables will mC depend

on?
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Intermediate factors

Order: B,W,C,K,I,S
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• ψ(K,C) and ψE(C) will have to be eliminated

• None of the factors that will be eliminated can reference B or

W , since they would have been eliminated already

• None of the factors can reference I or S, (variables outside C ’s

subtree), because of tree-ness

• So the factor that we create will be a function of K only!

• We can view this as a message computed by C and passed on

to K. Call it mCK(K).
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Message passing
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The message passed by C to K will be:

mCK(K) =
X

c

“
ψE(c)ψ(c, k)mBC(c)mWC(c)

”

where mBC(C) and mWC(C) are the messages from B and C.
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Variable elimination for trees

• To eliminate node Xj , we have:

mji(xi) =
X
xj

0
@ψE(xj)ψ(xi, xj)

Y
k∈neighbors(xj)−{xi}

mkj(xj)

1
A

• The desired probability is computed as:

p(y|x̂E) ∝ ψE(y)
Y

k∈neighbors(Y )

mky(y)
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What if we want to query more variables?

• Suppose we want to query K too. What messages are needed?
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• Note that almost all messages are the same!

• Key idea: messages can be re-used for the computation of

other queries
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• Note that almost all messages are the same!

• Key idea: messages can be re-used for the computation of

other queries

January 18, 2008 11 COMP-526 Lecture 7

Computing all probabilities

B

C

K

S

I

W

• Because messages can be re-used, we can compute all

conditional probabilities by computing all messages!

• Note that the number of messages is not too big

• We can use our previous equations to compute messages, but

we need a protocol for when to compute them
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Message-passing protocol

• A node can send a message to a neighbor after it has received

the messages from all its other neighbors.

• Synchronous parallel implementation: any node with d

neighbors sends a message after receiving messages on d − 1

edges

B

C

K

S

I

W

• What messages are sent next?
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Message passing example
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• Past messages are dashed, current messages are in solid

arrow.

• This is called the sum-product algorithm for trees
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Sequential implementation of the sum-product algorithm

1. Introduce the evidence (by putting in the evidence potentials)

2. Choose any node as root

3. Inward pass: Send all messages toward the root

4. Outward pass: Send all messages outward from the root

5. Compute the probabilities at all the nodes
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Example: Variable elimination in a Bayes net
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Compute p(B|S = 0) ?

1. Fix a variable ordering, e.g. K,C, S, W, B

2. Initialize the active factors list:

p(K), p(C|K), p(S|K), p(W |S,C), p(B|C), δ(S, 0)

3. EliminateK :

mK(c, s) =
X

k

p(k)p(c|k)p(s|k)
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Example continued
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mK(c, s) =
X

k

p(k)p(c|k)p(s|k)

• Conceptually, at this point, we have eliminated node K from the

graph

• The two nodes that create the new factor can be seen as

linked through an edge
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Example: Variable elimination for undirected graphs
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• When we eliminate K, we create a new factor:

mK(c, s) =
X

k

ψ(k)ψ(k, c)ψ(k, s)

• From the point of view of graph operations, we:

1. Connected the neighbors of K

2. Eliminated K from the graph
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Example continued

The new graph looks as follows:

B

K

S
C

W
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Variable elimination as node elimination: Undirected graphs

• A node will share potentials across cliques

• Hence, by summing out we create a factor which involves

potentially all its neighbors

• Eliminating node Xi can be viewed as a two-step graph

operation:

1. Connect all neighbors of Xi (pairwise)

This will make them all part of a clique (and the new factor is

associated with this clique)

2. Remove Xi (by summing out or by conditioning on its value)

• The resulting cliques are called elimination cliques

• The original graph together with all the added edges becomes a

triangulated graph (every cycle of length > 3 has a chord)
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Variable elimination as node elimination: Directed graphs

• The parameters of the graph are p(xi|xπi).

• Hence, when we eliminate xi, its parents will be involved in the

same factor, even if they did not share an edge before

• To think of variable elimination as node elimination we must:

1. Moralize the graph (marry all parents of common children

and drop arc directions)

2. Do elimination in the resulting undirected graph as before
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Example
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ψ(K,C, S) = p(K)p(C|K)p(S|K)

ψ(B,C) = p(B|C)

ψ(C, S,W ) = p(W |C, S)
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Example: Variable elimination

Clique tree:
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• We create a clique by connecting all the nodes that are involved

in creating a factor (they would form a clique after elimination)

• The resulting structure is called a clique tree

• In general, a clique tree is a singly connected graph in which

nodes are cliques of an underlying graph
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Separator sets

• A separator set is the intersection of two corresponding cliques

• The separator sets are themselves cliques

• They provide an explicit representation of the

intermediate factors that pass between cliques

• Junction tree property: the cliques containing a particular

node form a connected subtree
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Example: Junction tree property

The cliques containing a particular node form a connected subtree

D

A B

C

How do we obtain a junction tree from this graph?
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Constructing a junction tree

• Moralize the graph (if directed)

• Choose a node ordering and find the cliques generated by

variable elimination. This gives a triangulation of the graph

• If the graph is not triangulated, we may not be able to get a

clique tree with the junction tree property
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