
Lecture 5: Undirected graphical models

• Semantics of probabilistic models over undirected graphs

• Parameters of undirected models

• Example applications
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Undirected graphical models

• So far we have used directed graphs as the underlying structure

of a Bayes net

• Why not use undirected graphs as well?

E.g., variables might not be in a “causality” relation, but they can

still be correlated, like the pixels in a neighborhood in an image

• An undirected graph over a set of random variables

{X1, . . . Xn} is called a undirected graphical model or

Markov random field (MRF) or Markov network
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Conditional independence

• We need to be able to specify, for a given graph, if X⊥⊥Z|Y , for

any disjoint subsets of nodes X , Y , Z.

• In directed graphs, we did this using the Bayes Ball algorithm

• In undirected graphs, independence can be established simply

by graph separation: if every path from a node in X to a node in

Z goes through a node in Y , we conclude that X⊥⊥Z|Y

• Hence, independence can be established by removing the

nodes in the conditioning set then doing reachability analysis on

the remaining graph.

• What is the Markov blanket of a node in an undirected model?
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How expressive are undirected models?

• Are undirected models more expressive than directed models?

I.e. for any directed model, can we find an undirected model that

satisfies exactly the same conditional independence relations?

• Are undirected models less expressive?

I.e. for any undirected model, can we find a directed model that

satisfies exactly the same conditional independencies?
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Example: An undirected graph

W

X

Y

Z

Can we find a directed graph that satisfies the same independence

relations?
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Example: A directed graph

Y

X Z

Can we find an undirected graph that satisfies the same

independence relations?
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Expressiveness of undirected models

• Undirected models are neither more nor less expressive than

directed models; they are simply different

• The semantics of an undirected model naturally capture

correlation of r.v.s, not causation

• If you ever want, in an application, to write a Bayes net with

cycles, it is a sign that the right model is undirected.
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Local parameterization

• In directed models, we had local probability models (CPDs)

attached to every node, giving the conditional probability of the

corresponding random variable given its parents

• The joint probability distribution expressed by a directed model

factorizes over the graph

• This means that the joint can be written as a product of “local”

factors, which depend on subsets of the variables.

• We want a similar property for directed models.

• But what should the local factors be?
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What about local marginal parameterizations?

• Suppose we express the joint as:

p(X1, . . . Xn) =
Y

i

p(Xi,Neighbors(Xi))

• It is local and has a nice interpretation

• So consider using it for an example:

ZX Y
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Local parameterizations: Try 2

• Consider a pair of nodes X and Y that are not directly

connected through an arc

• According to the conditional independence interpretation, X

and Y are independent given all the other nodes in the graph

X⊥⊥Y |{X1, . . . Xn}− X − Y

• Hence, there must be a factorization in which they do not

appear in the same factor

• This suggests that we should define factors on cliques

Recall that a clique is a fully connected subset of nodes (i.e.,

there is an arc between every pair of nodes)
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Example: what are the cliques?

D

A B

C
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Defining parameters on cliques

The main idea is that if variables do not have an arc between them,

they are conditionally independent given the rest of the graph, and

hence should not be in the same local model.

D

A B

C
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Clique potentials

• We will represent the joint distribution as a

product of clique potentials:

p(X1 = x1, . . . Xn = xn) =
1
Z

Y

cliques C

ψC(xC)

where xC are the values for the variables that participate in

clique C and Z is a normalization constant, to make

probabilities sum to 1:

Z =
X

x

Y

cliques C

ψC(xC)

• Without loss of generality, we can consider only maximal cliques

These are the cliques that cannot be extended with other nodes

without losing the fully connected property
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Example

D

A B

C
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Normalizing constant

• The normalizing constant Z can be ugly to compute, since we

have to sum over all possible assignments of values to variables

• Depending on the shape of the graph, the summation could be

done efficiently

• However, if we are interested in conditional probabilities, we do

not even need to compute it! (why?)
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Interpretation of clique potentials

• Potentials are NOT probabilities (conditional or marginal)

• But they do have a natural interpretation as “agreement” or

“energy”

• Example: spin glass model
Xi
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More on spin glasses

• In general, a spin glass is a collection of magnetic moment

(spins) whose low temperature state is disordered.

• They have been studied a lot in statistical physics and they can

model many practical materials

• These models have two important features:

– There is competition among the interactions between

moments, so there is no configuration of spins that is favored

by all interactions; this is called frustration

– Interactions are at least partially random

• There are many states whose energy is locally optimal (low)

• Finding such a state can be done by probabilistic inference.
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Boltzmann (Gibbs) distribution

• The fact that potentials must be non-negative is annoying

• We can escape from that by using the exponential function,

which is non-negative:

ψC(xC) = e−HC (xC)

• Now we have to define HC(xC), which can be anything!

• Moreover, the joint also has a nice form:

p(x) =
1
Z

Y

C

e−HC(xC) =
1
Z

e−
P

C
HC(xC) =

1
Z

e−H(x)

where H(x) =
P

C HC(xC) is the “free energy”

• Hence, p is represented using a Boltzmann distribution
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Special case: Ising Model

• All r.v.s are binary and nodes are arranged in a regular fashion

and connected only to geometric neighbors.

• E.g., Spin glass in 2D:

• Energy has the form:

H(x) =
X

i,j

βijxixj +
X

i

αixi
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Applications of the Ising model

• Very popular for explaining the effect of “society” or

“environment” on a “component” or “individual”

– Flocking behavior

– Behavior of neural networks

– Sociology studies

• In all these cases, the effort is both to find, from the data, what

the model should be, as well as to use inference in order to

determine what will be the next state of minimum energy to

which the model “settles”
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Choosing the parameters of a Markov network

• These nets often have a regular structures, and parameters

may be similar (or identical) in all cliques of a given type

• As a result, optimization or learning are often the preferred ways

of coming up with parameters

January 14, 2008 21 COMP-526 Lecture 5

Important result (for strictly positive distributions)

• Consider the family of probability distributions that respect all

the conditional independencies implied by an undirected graph

G. These are the distributions that satisfy the global Markov

properties of the graph

• Consider the family of probability distributions defined by

ranging over all allowed maximal clique potential functions.

These are the distributions that factorize on the graph G.

• The Hammersley-Clifford theorem shows that these two

families are identical.

• This is a similar result to the “soundness and completeness” of

d-separation which we discussed for directed models.
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A real example: Texture synthesis

• You are given a small patch of texture and want to produce a

“similar” larger patch

• We can define a Markov random field over pixels, e.g:

• The “potentials” favor certain configurations of pixels over others

• We get the texture by doing inference (and sometimes learning)

for this model
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More applications

• MRFs are used extensively in computer vision, e.g for labeling

tasks

• Labeling can be low-level, like labeling edges or other pixel

configurations, or high-level, like labeling objects in an image

• Images often obey constraints (e.g. smoothness of surfaces,

texture) which can be captured easily as a MRF structure

• Labeling then becomes a search for a pattern of minimum

energy, which is often solved by optimization

• Learning can help establish the parameters of the model.
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