Lecture 5: Undirected graphical models

- Semantics of probabilistic models over undirected graphs
- Parameters of undirected models
- Example applications

January 14, 2008

1

COMP-526 Lecture 5

Undirected graphical models

- So far we have used directed graphs as the underlying structure of a Bayes net
- Why not use *undirected* graphs as well?

E.g., variables might not be in a "causality" relation, but they can still be correlated, like the pixels in a neighborhood in an image

• An undirected graph over a set of random variables

 $\{X_1, \ldots X_n\}$ is called a <u>undirected graphical model</u> or Markov random field (MRF) or <u>Markov network</u>

Conditional independence

- We need to be able to specify, for a given graph, if $X \perp \!\!\!\perp Z | Y$, for any disjoint subsets of nodes X, Y, Z.
- In directed graphs, we did this using the Bayes Ball algorithm
- In undirected graphs, independence can be established simply by graph separation: if every path from a node in X to a node in Z goes through a node in Y, we conclude that X III Z |Y
- Hence, independence can be established by removing the nodes in the conditioning set then doing reachability analysis on the remaining graph.
- What is the Markov blanket of a node in an undirected model?

January 14, 2008

3

COMP-526 Lecture 5

How expressive are undirected models?

- Are undirected models more expressive than directed models?
 I.e. for any directed model, can we find an undirected model that satisfies exactly the same conditional independence relations?
- Are undirected models less expressive?
 I.e. for any undirected model, can we find a directed model that satisfies exactly the same conditional independencies?

Example: An undirected graph

Can we find a directed graph that satisfies the same independence relations?

January 14, 2008

5

COMP-526 Lecture 5

Example: A directed graph

Can we find an undirected graph that satisfies the same independence relations?

Expressiveness of undirected models

- Undirected models are neither more nor less expressive than directed models; they are simply different
- The semantics of an undirected model naturally capture *correlation* of r.v.s, not causation
- If you ever want, in an application, to write a Bayes net with cycles, it is a sign that the right model is undirected.

January 14, 2008

7

COMP-526 Lecture 5

Local parameterization

- In directed models, we had local probability models (CPDs) attached to every node, giving the conditional probability of the corresponding random variable given its parents
- The joint probability distribution expressed by a directed model factorizes over the graph
- This means that the joint can be written as a product of "local" factors, which depend on subsets of the variables.
- We want a similar property for directed models.
- But what should the local factors be?

What about local marginal parameterizations?

• Suppose we express the joint as:

$$p(X_1, \dots, X_n) = \prod_i p(X_i, \mathsf{Neighbors}(X_i))$$

- It is local and has a nice interpretation
- So consider using it for an example:

January 14, 2008

9

COMP-526 Lecture 5

Local parameterizations: Try 2

- Consider a pair of nodes *X* and *Y* that are not directly connected through an arc
- According to the conditional independence interpretation, *X* and *Y* are independent given all the other nodes in the graph

 $X \perp \!\!\!\perp Y | \{X_1, \dots, X_n\} - X - Y$

- Hence, there must be a factorization in which they do not appear in the same factor
- This suggests that we should define factors on <u>cliques</u> Recall that a clique is a fully connected subset of nodes (i.e., there is an arc between every pair of nodes)

Example: what are the cliques?

January 14, 2008

11

COMP-526 Lecture 5

Defining parameters on cliques

The main idea is that if variables do not have an arc between them, they are conditionally independent given the rest of the graph, and hence should not be in the same local model.

Clique potentials

• We will represent the joint distribution as a **product of clique potentials**:

$$p(X_1 = x_1, \dots, X_n = x_n) = \frac{1}{Z} \prod_{\text{cliques } C} \psi_C(\mathbf{x}_C)$$

where \mathbf{x}_{C} are the values for the variables that participate in clique C and Z is a normalization constant, to make probabilities sum to 1:

$$Z = \sum_{\mathbf{x}} \prod_{\text{cliques } C} \psi_C(\mathbf{x}_C)$$

 Without loss of generality, we can consider only <u>maximal cliques</u> These are the cliques that cannot be extended with other nodes without losing the fully connected property

January 14, 2008

13

COMP-526 Lecture 5

More on spin glasses

- They have been studied a lot in statistical physics and they can model many practical materials
- These models have two important features:
 - There is <u>competition</u> among the interactions between moments, so there is no configuration of spins that is favored by all interactions; this is called <u>frustration</u>
 - Interactions are at least partially random
- There are many states whose energy is locally optimal (low)
- Finding such a state can be done by probabilistic inference.

January 14, 2008	17

COMP-526 Lecture 5

Boltzmann (Gibbs) distribution

- The fact that potentials must be non-negative is annoying
- We can escape from that by using the exponential function, which is non-negative:

$$\psi_C(\mathbf{x}_C) = e^{-H_C(\mathbf{x}_C)}$$

- Now we have to define $H_C(\mathbf{x}_C)$, which can be anything!
- Moreover, the joint also has a nice form:

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C} e^{-H_{C}(\mathbf{x}_{C})} = \frac{1}{Z} e^{-\sum_{C} H_{C}(\mathbf{x}_{C})} = \frac{1}{Z} e^{-H(\mathbf{x})}$$

where $H(\mathbf{x}) = \sum_{C} H_{C}(\mathbf{x}_{C})$ is the "free energy"

• Hence, *p* is represented using a *Boltzmann distribution*

Special case: Ising Model

- All r.v.s are binary and nodes are arranged in a regular fashion and connected only to geometric neighbors.
- E.g., Spin glass in 2D:

• Energy has the form:

$$H(\mathbf{x}) = \sum_{i,j} \beta_{ij} x_i x_j + \sum_i \alpha_i x_i$$

January 14, 2008

19

COMP-526 Lecture 5

Applications of the Ising model

- Very popular for explaining the effect of "society" or "environment" on a "component" or "individual"
 - Flocking behavior
 - Behavior of neural networks
 - Sociology studies
- In all these cases, the effort is both to find, from the data, what the model should be, as well as to use inference in order to determine what will be the next state of minimum energy to which the model "settles"

A real example: Texture synthesis

- You are given a small patch of texture and want to produce a "similar" larger patch
- We can define a Markov random field over pixels, e.g:

- The "potentials" favor certain configurations of pixels over others
- We get the texture by doing inference (and sometimes learning) for this model

January 14, 2008

23

COMP-526 Lecture 5

More applications

- MRFs are used extensively in computer vision, e.g for labeling tasks
- Labeling can be low-level, like labeling edges or other pixel configurations, or high-level, like labeling objects in an image
- Images often obey constraints (e.g. smoothness of surfaces, texture) which can be captured easily as a MRF structure
- Labeling then becomes a search for a pattern of minimum energy, which is often solved by optimization
- Learning can help establish the parameters of the model.