
Lecture 3: Conditional independence and graph structure

• Independence maps (I-maps)

• Factorization theorem

• The Bayes ball algorithm and d-separation
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Recall from last time

• Bayesian networks are a graphical model representing

conditional independence relations

• The nodes of the graphs represent r.v.’s

• Each node has associated with it a conditional probability

distribution (CPD) for the corresponding r.v., given its parents

• The joint probability distribution can be computed by multiplying

the local CPDs
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Example: A Bayesian (belief) network
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• The nodes represent random variables

• The arcs represent “influences”

• At each node, we have a conditional probability distribution (CPD) for

the corresponding variable given its parents
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Recall: I-Maps

A directed acyclic graph (DAG) G whose nodes represent random

variables X1, . . . , Xn is an I-map (independence map) of a

distribution p if p satisfies the independence assumptions:

Xi⊥⊥Nondescendents(Xi)|Xπi , ∀i = 1, . . . n

where Xπi are the parents of Xi
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Example

Consider all possible DAG structures over 2 variables. Which graph

is an I-map for the following distribution?

x y p(x, y)

0 0 0.08

0 1 0.32

1 0 0.32

1 1 0.28

What about the following distribution?

x y p(x, y)

0 0 0.08

0 1 0.12

1 0 0.32

1 1 0.48
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Factorization theorem

G is an I-map of p if and only if p factorizes according to G:

p(x1, . . . , xn) =
nY

i=1

p(xi|xπi), ∀xi ∈ ΩXi

Proof: =⇒
Assume that G is an I-map for p. By the chain rule,
p(x1, . . . , xn) =

Qn
i=1

p(xi|x1, . . . , xi−1). Without loss of
generality, we can order the variables xi according to G. From this

assumption, Xπi ⊆ {X1, . . . , Xi−1}. This means that
{X1, . . . , Xi−1} = Xπi ∪ Z, where Z ⊆ Nondescendents(Xi).
Since G is an I-map, we have Xi⊥⊥Nondescendents(Xi)|Xπi , so:

p(xi|x1, . . . , xi−1) = p(xi|z, xπi) = p(xi|xπi)

and the conclusion follows.
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Factorization theorem (2)

Proof: ⇐=

Assume the p factorizes over G. Let XDi denote the descendents

of Xi and XNi denote nondescendents. Note that

{X1 . . . Xn} = {Xi} ∪ Xπi ∪ XDi ∪ XNi . We have:

p(xi|xπi , xNi) =
p(xi, xπi , xNi)P

xi∈ΩXi
p(xi, xπi , xNi)

We compute the numerator:

p(xi, xπi , xNi) =
X

xDi

p(xi, xπi , xNi , xDi) =
X

xDi

nY

j=1

p(xj |xπj )

=p(xi|xπi)
Y

xj∈xNi

p(xj |xπj )
Y

xk∈xπi

p(xk|xπk
)
X

xDi

Y

l∈XDi

p(xl|xπl
)
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Factorization theorem (3)

The last factor above is 1

The denominator of the fraction is:

X

xi∈ΩXi

p(xi, xπi , xNi) =
X

xi∈ΩXi

p(xi|xπi)
Y

xj∈xNi

p(xj |xπj )
Y

xk∈xπi

p(xk|xπk
)

=
Y

xj∈xNi

p(xj |xπj )
Y

xk∈xπi

p(xk|xπk
)

Putting these back together in the fraction, we get:

p(xi|xπi , xNi) = p(xi|xπi) =⇒ Xi⊥⊥XNi |Xπi

which means that G is an I-map of p.
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Factorization example

C

E B

R A

The factorization theorem allows us to represent p(c, a, r, e, b) as:

p(c, a, r, e, b) = p(b)p(e)p(a|b, e)p(c|a)p(r|e)

instead of:

p(c, a, r, e, b) = p(b)p(e|b)p(a|e, b)p(c|a, e, b)p(r|a, e, c, b)
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Complexity of factorized representations

• If k is the maximum number of ancestors for any node in the

graph, and we have binary variables, then every conditional

probability distribution will require ≤ 2k numbers to specify

• The whole joint distribution can then be specified with ≤ n · 2k

numbers, instead of 2n

• The savings are big if the graph is sparse (k ) n).
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Minimal I-maps

• The fact that a DAG G is an I-map for a joint distribution p might

not be very useful.

E.g. Complete DAGs (where all arcs that do not create a cycle

are present) are I-maps for any distribution (because they do

not imply any independencies).

• A DAG G is minimal I-map of p if:

1. G is an I-map of p

2. If G′ ⊆ G then G′ is not an I-map for p
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Constructing minimal I-maps

The factorization theorem suggests an algorithm:

1. Fix an ordering of the variables: X1, . . . , Xn

2. For each Xi, select its parents Xπi to be the minimal subset of

{X1, . . . , Xi−1} such that

Xi⊥⊥ ({X1, . . . ,Xi−1}− Xπi) |Xπi .

This will yield a minimal I-map
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Non-uniqueness of the minimal I-map

• Unfortunately, a distribution can have many minimal I-maps,

depending on the variable ordering we choose!

• The initial choice of variable ordering can have a big impact on

the complexity of the minimal I-map:

Example:

C

E B

R A

C

E B

R A

Ordering: E,B, A, R, C Ordering: C, R,A, E,B

• A good heuristic is to use causality in order to generate an

ordering.
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DAGs and independencies

• Given a graph G, what sort of independence assumptions does

it imply? E.g. Consider the alarm network:

C

E B

R A

• In general the lack of an edge corresponds to lack of a variable

in the conditional probability distribution, so it must imply some

independencies
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Implied independency

• The fact that a Bayes net is an I-map for a distribution implies a

set of conditional independencies that always hold, and allows

us to compute join probabilities (and hence make inference) a

lot faster in practice

• In practice, we also have evidence about the values of certain

variables.

• Is there a way to say what are all the independence relations

implied by a Bayes net?
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A simple case: Indirect connection

YX Z

• Think of X as the past, Y as the present and Z as the future

• This is a simple Markov chain

• We interpret the lack of an edge between X and Z as a

conditional independence, X⊥⊥Z|Y . Is this justified?
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Indirect connection (continued)

YX Z

• We interpret the lack of an edge between X and Z as a

conditional independence, X⊥⊥Z|Y . Is this justified?

• Based on the graph structure, we have:

p(X, Y, Z) = p(X)p(Y |X)p(Z|Y )

• Hence, we have:

p(Z|X, Y ) =
p(X, Y,Z)

p(X, Y )
=

p(X)p(Y |X)p(Z|Y )

p(X)p(Y |X)
= p(Z|Y )

• Note that the edges that are present do not imply dependence.

But the edges that are missing do imply independence.
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A more interesting case: Common cause

Z

Y

X

• Again, we interpret the lack of edge between X and Z as

X⊥⊥Z|Y . Why is this true?

p(X|Y,Z) =
p(X, Y, Z)

p(Y,Z)
=

p(Y )p(X|Y )p(Z|Y )
p(Y )p(Z|Y )

= p(X|Y )

• This is a “hidden variable” scenario: if Y is unknown, then X

and Z could appear to be dependent on each other
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The most interesting case: V-structure

Y

X Z

• In this case, the lacking edge between X and Z is a statement

of marginal independence: X⊥⊥Z.

• In this case, once we know the value of Y , X and Z might

depend on each other.

• E.g., suppose X and Z are independent coin flips, and Y is

true if and only if both X and Z come up heads.

• Note that in this case, X is not independent of Z given Y !

• This is the case of “explaining away”.
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Bayes ball algorithm

• Suppose we want to decide whether X⊥⊥Z|Y for a general

Bayes net with corresponding graph G.

• We shade all nodes in the evidence set, Y

• We put balls in all the nodes in X , and we let them bounce

around the graph according to rules inspired by these three

base cases

• Note that the balls can go in any direction along an edge!

• If any ball reaches any node in Z, then the conditional

independence assertion is not true.

January 9, 2008 20 COMP-526 Lecture 3



Base rules

• Head-to-tail

Y known, path blocked

X Y Z X Y Z

Y unknown, path unblocked

• Tail-to-tail

Y known, path blocked

Y

X Z

Y

X Z

Y unknown, path unblocked

• Head-to-head

Y known, path UNBLOCKED

X Z

Y

X Z

Y

Y unknown, path BLOCKED
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