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Outline

• Administrative details

• Course overview

– Modeling uncertainty using probabilities

– Decision making under uncertainty

• Random variables and probabilities

• Conditional probability and Bayes rule
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Class reading

• Selected chapters from the following books:

– M. Jordan, Introduction to Graphical Models (copies will be

distributed, pending approval)

– C. Bishop, Pattern Recognition and Machine Learning

– D.J.C.MacKay,

Information theory, inference and learning algorithms

– S. Russell and P. Norvig:

Artificial intelligence: A modern approach

– R. S. Sutton and A. G. Barto,

Reinforcement Learning: An Introduction

• Class notes: posted on the web page
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Evaluation mechanisms

• Seven assignments (70%)

– Problems related to the class material

– Programming exercises

• One written examination for the first part of the course (15%)

• One project for the second part of the course (15%)

• Class participation and discussions (up to 5% extra credit)
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Intelligent systems have to deal with uncertainty!

E.g. Predicting the behavior of other people (girlfriend / boyfriend /

kids)

• Partial knowledge of the state of the world

E.g. We don’t know exactly what is going on in their mind

• Noisy observations

E.g. Smiling or frowning, making faces

• Inherent stochasticity

E.g. Today she likes the DVD, tomorrow she does not!

• Phenomena that are not covered by our models

E.g. Level of hormones, which depend on food, exercise, ...
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How do we deal with uncertainty?

• In this course, we will focus on building models that capture the

uncertainty about the state of the world, the dynamics of the

system and about our observations.

• The model will then be used to reason about the world, and

about the effects of different actions.

• Important questions:

– What mathematical formalism should we use? What is the

meaning of our model?

– What queries can the model answer? What is the method for

answering queries?

– How do we construct a model? Do we need to ask an expert,

or can the model be learned from data?
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AI approaches for dealing with uncertainty

• Default reasoning: believe something until evidence to the

contrary is found

• Rules with “fudge factors”

• Fuzzy logic: allows events to be “sort of true”

• Probability
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The dawning of the age of stochasticity

For over two millennia, Aristotle’s logic has ruled over the thinking

of western intellectuals. All precise theories, all scientific models,

even models of the process of thinking itself, have in principle

conformed to the straight-jacket of logic. But from its shady

beginnings devising gambling strategies and counting corpses in

medieval London, probability theory and statistical inference now

emerge as better foundations for scientific models, especially

those of the process of thinking, and as essential ingredients of

theoretical mathematics, even the foundations of mathematics

itself. We propose that this sea of change in our perspective will

affect virtually all of mathematics in the next century.

David Mumford, 1999
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Probability

• A well-known and well-understood framework for dealing with

uncertainty

• Has a clear semantics

• Provides principled answers for:

– Combining evidence

– Predictive and diagnostic reasoning

– Incorporation of new evidence

• Can be learned from data

• Arguably intuitive to human experts
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Representing probabilities efficiently

• Naive representations of probability are hopelessly inefficient

E.g. consider patients described by several attributes:

– Background: age, gender, medical history,...

– Symptoms: fever, blood pressure, headache,...

– Diseases: pneumonia, hepatitis,...

• A probability distribution needs to assign a number to each

combination of values of these attributes!

• Real examples involve hundreds of attributes

• Key idea: exploit regularities and structure of the domain

• We will focus mainly on exploiting conditional independence

properties
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Example: A Bayesian (belief) network
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Probabilistic reasoning

During the first half of the course we will study:

• Syntax and semantics of graphical models for representing

probability distributions:

– Bayesian networks (built on top of directed graphs)

– Markov networks (built on top of undirected graphs)

• How to efficiently answer queries in such networks

• How to learn Bayesian and Markov networks from data

• How to model time sequences using graphical models

– Hidden Markov Models (HMMs)

– Dynamic Bayesian Networks (DBNs)

– Kalman filters
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Fielded applications

• Expert systems

– Medical diagnosis (e.g. Pathfinder)

– Fault diagnosis (e.g. jet-engines)

• Monitoring

– Space shuttle engines (Vista project)

– Freeway traffic

• Sequence analysis and classification

– Speech recognition

– Biological sequences

• Information access

– Collaborative filtering

– Information retrieval
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Decision making

• Suppose you believe the following:

p(girlfriend likes Terminator DVD| . . .) = 0.04

p(girlfriend likes cashmere sweater| . . .) = 0.70

p(girlfriend likes diamond necklace| . . .) = 0.9999

Which action should you choose?

Depends on preferences for making her happy vs. your own

interest vs. cost

• Probability is not enough for choosing actions

• We also need to consider risks and payoffs

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory
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Practical decision making

• We need to represent both probabilities and utilities

• The expected utility of actions is computed given evidence and

past actions

• A “rational” agent should choose the action that maximizes

expected utility

• Value of information: is it worth acquiring more information in

order to choose better actions?
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Decision making

In the second half of the course we will study:

• Utility theory

• Models of repeated decision: Markov Decision Processes

• Partially Observable Markov Decision Processes
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Fielded applications

• Robot control

• Control of complex, chaotic systems (e.g. helicopters)

• Game playing

• Inventory management

• Allocation of bandwidth in cell phone networks

• Network routing

• ...
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What is a random variable?

• Something that has not happened yet:

– Will a tossed coin come up heads or tails?

– Will the cancer recur or not?

• Something you do not know . . .

– Did the coin come up heads or tails?

– How did the protein fold?

. . . because you have not/cannot observe it directly or compute

it definitively from what you have observed.
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Discrete random variables

A discrete random variable X takes values from a discrete set

ΩX , called the domain or sample space of X .

• X = roll of a die; ΩX = {1, 2, 3, 4, 5, 6}.

• X = nucleotide a position 1, chromosome 1, in a particular

person; ΩX = {A,C, G, T}.

• X = does a customer buy a new TV or not

An event is a subset of ΩX .

• e1 = {1} corresponds to a die roll of 1

• e2 = {1, 3, 5} corresponds to an odd value for the roll
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Probabilities

• For a discrete r.v. X , each value x ∈ ΩX has a probability of

occurring, which we will denote by p(X = x) or, more simply,

p(x).

• p(X) denotes the probability distribution function (p.d.f.) for

X . It can be thought of as a table.

x 1 2 3 4 5 6

p(x) 1/6 1/6 1/6 1/6 1/6 1/6

• Basic properties:

– 0 ≤ p(x) ≤ 1,∀x ∈ ΩX

–
P

x∈ΩX
p(x) = 1
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Cumulative distribution functions

• If X takes values from an ordered set ΩX (such as integers)

then the cumulative distribution function is

c.d.f.(x) = p(X ≤ x) =
X
x′≤x

p(x′)

• For example, ifX is the roll of a die, then:

x 1 2 3 4 5 6

p(x) 1/6 1/6 1/6 1/6 1/6 1/6

c.d.f.(x) 1/6 2/6 3/6 4/6 5/6 1
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Mean and variance

• If ΩX is a set of numbers, then the expected value or mean of

X is

E(X) =
X

x∈ΩX

xp(x)

• The variance of X is

V ar(X) = E(X2) − (E(X))2

=

0
@ X

x∈ΩX

x2p(x)

1
A −

0
@ X

x∈ΩX

xp(x)

1
A

2

• The standard deviation of X is the square root of the variance

• Example: If X is a die roll, then the mean value is 3.5 and the

standard deviation is approximately 3.4157.
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Continuous random variables

• A continuous random variable X takes real values.

– X = expression level for a gene as reported by a microarray.

– X = price for which a house will sell

– X = size of a tumor

• Any continuous r.v. X has a cumulative distribution function

c.d.f.(x) = p(X ≤ x)

with the following properties:

– c.d.f.(x) is a non-decreasing function; c.d.f.(x) ≤ c.d.f.(x′)

whenever x ≤ x′.

– limx→−∞ c.d.f(x) = 0.

– limx→+∞ c.d.f.(x) = 1.
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Probability density functions

• If c.d.f(x) is continuous and differentiable then its derivative is

the probability density function, analogous to the probability

distribution function of a discrete r.v.

d

dx
c.d.f(x) = p(x)

• Properties:

– 0 ≤ p(x) < ∞. Note that p(x) > 1 is allowed, unlike for

discrete r.v.’s.

–
R

x
p(x)dx = 1, similar to discrete r.v.’s.
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Example: Gaussian random variables

X ∼ N(µ, σ) has mean µ and standard deviation σ.
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Not all continuous r.v.’s have p.d.f.’s

• Suppose X equal to zero with probability 1
2
and otherwise is

distributed according to N(0, 1).

• Then the c.d.f. is

c.d.f(x) =

8<
:

1
2
f(x) x < 0

1
2
f(x) + 1

2
x ≥ 0

where f(x) denotes the c.d.f. of a N(0, 1) r.v.

!4 !2 0 2 4
0

0.5

1

• There is no p.d.f. because of the discrete jump in the c.d.f.
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Mean and variance

• We will almost always restrict our attention to continuous r.v.’s

with p.d.f.’s.

• Then, the expected value is defined as

E(X) =

Z
x

xp(x)dx

• Variance is

V ar(X) = E(X2) − (E(X))2

=

Z
x

x2p(x)dx −

„Z
x

xp(x)dx

«2
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Beliefs

• We will use probability in order to describe the world and the

existing uncertainties

• Beliefs (also called Bayesian or subjective probabilities) relate

logical propositions to the current state of knowledge

• Beliefs are subjective assertions about the world, given one’s

state of knowledge

E.g. p(Some day AI agents will rule the world) = 0.2 reflects a

personal belief, based on one’s state of knowledge about

current AI, technology trends, etc.

• Different agents may hold different beliefs

• Prior (unconditional) beliefs denote belief prior to the arrival

of any new evidence.
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Defining probabilistic models

• We define the world as a set of random variables

Ω = {X1 . . . Xn}.

• A probabilistic model is an encoding of probabilistic

information that allows us to compute the probability of any

event in the world
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Example

• Let X1 = true iff a rolled die comes out even.

• Let X2 = true iff the same rolled die comes out odd.

p(X1 = true) = p(X1 = false) =
1
2

p(X2 = true) = p(X2 = false) =
1
2

• What is the probability p(X1 = true and X2 = true)?

• We know it is zero.

• But there is no way of knowing just from p(X1) and p(X2).

⇒ There are several ways we can specify the relationships

between variables. They all come down to specifying joint

probability distributions/densities.
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Joint probabilities

• When considering r.v.’s X1, X2, . . . , Xm, the joint probability

function specifies the probability of every combination of values.

p(X1 = x1 and X2 = x2 and . . . and Xm = xm)

• When the r.v.’s are discrete, the joint probability can be viewed

as a table.

even=true even=false

odd=true 0 1/2

odd=false 1/2 0
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Marginal probabilities

Given r.v.’s X1, X2, . . . Xm with joint probability p(x1, x2, . . . , xm),

the marginal probability of a r.v. Xi is obtained by summing (or

integrating) over all possible values of the other r.v.’s:

p(Xi = xi) =
X

x1,x2,...,xi−1,xi+1,...,xm

p(x1, x2, . . . , xm)

die=1 2 3 4 5 6 p(even)

even=true 0 1/6 0 1/6 0 1/6 1/2

even=false 1/6 0 1/6 0 1/6 0 1/2

p(die) 1/6 1/6 1/6 1/6 1/6 1/6

A similar definition holds for any subset of r.v.’s.

January 4, 2008 34 COMP-526 Lecture 1



A simple probabilistic model

• We divide the world into a set of elementary, mutually exclusive

events, called states

E.g. If the world is described by two binary variables A, B, a

state will be a complete assignment of truth values for A and B.

• A joint probability distribution function provides the

probabilities for each state

• Probabilities for other events which are not listed explicitly are

computed by marginalization. This process is called inference.
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Inference using joint distributions

E.g. Suppose Happy and Rested are the random variables:

Happy = 1 Happy = 0

Rested = 1 0.05 0.1

Rested = 0 0.6 0.25

The unconditional probability of any proposition is computable as

the sum of entries from the full joint distribution

E.g. p(Happy = 1) = p(Happy = 1,Rested = 1) + p(Happy =

1,Rested = 0) = 0.65
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Example

Suppose we consider medical diagnosis, and there are 100 different

symptoms and test results that the doctor could consider. A patient

comes in complaining of fever, dry cough and chest pains. The

doctor wants to compute the probability of pneumonia.

• The probability table has >= 2100 entries!

• For computing the probability of a disease, we have to sum out

over 97 hidden variables!
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Independent random variables

• Two random variables X and Y are independent, denoted

X⊥⊥Y , if and only if

p(X = x and Y = y) = p(X = x)p(Y = y)

for all values x and y.

• This is often abbreviated as p(X, Y ) = p(X)p(Y ).

• If this requirement is satisfied, for binary variables, only n

numbers are necessary to represent the joint distribution,

instead of 2n!

• But this is a very strict requirement, almost never met.
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Conditional probablity

• The basic statements in the Bayesian framework talk about

conditional probabilities

• p(X = x|Y = y) denotes the belief that event X = x occurs

given that event Y = y has occurred with absolute certainty.

– E.g., p(die=1|odd = true) = 1/3.

– E.g., p(die=1|odd = false) = 0.

• The conditional probability can be defined (and computed) as

p(x|y) =
p(x, y)

p(y)

as long as p(y) > 0.

• An alternative formulation is given by the product rule:

p(x, y) = p(x|y)p(y) = p(y|x)p(x)
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Bayes’ Rule

• Bayes rule is a reformulation of the product rule:

p(x|y) =
p(y|x)p(x)

p(y)

.

• Another alternative formulation is the

complete probability formula:

p(x) =
X

y

p(x|y)p(y),

where y form a set of exhaustive and mutually exclusive events.
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Chain rule

Chain rule is derived by successive application of the product rule:

p(X1, . . . , Xn) =

= p(X1, . . . , Xn−1)p(Xn|X1, . . . , Xn−1)

= p(X1, . . . , Xn−2)p(Xn−1|X1, . . . , Xn−2)p(Xn|X1, . . . , Xn−1)

= . . .

=
nY

i=1

p(Xi|X1, . . . , Xi−1)
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Why conditional probabilities?

Conditional probabilities are interesting because we often observe

something and want to infer something/make a guess about

something unobserved but related.

• p(cancer recurs|tumor measurements)

• p(gene expressed > 1.3|transcription factor concentrations)

• p(collision to obstacle|sensor readings)

• p(word uttered|sound wave)

• ...
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