Generative Adversarial
Networks (GANS)

Based on slides from lan Goodfellow’s NIPS 2016 tutorial

Generative Modeling

- Density estimation

+ Sample generation

o ' ' ‘ .
) -~
3 —- v .
r . "
.
. | o d !
g 1 L 9
T '
4 gt
' Prm— -
L g
. o'
| - et it Y
-;‘ - ™
v ’l._ l‘~
- . .
u .\ - bad
¥
~ By
’ . rod
A -
o
el -
e e §

Training examples Model samples

Next Video Frame Prediction

Ground Truth MSE Adversarial

(Lotter et al 2016)

Image to Image Translation

=
—
=
holh
a
)
o
S
@)

Labels to Street Scene

input

output
output

erial to Map

(Isola et al 2016)

Maximum Likelihood

0" = arg;nax @t~ 1O Pmodel (T | O)

Taxonomy of Generative Models

l

Direct

/

N

Maximum Likelihood
\ GAN

Explicit density

Implicit density

o\

Tractable density

- Eg Fully visible belief
nets

. . Markov Chain
Approximate density _
Eg Generative
/ \ stochastic networks
Variational |Markov Chain

-EG Change of Eg Variational
variables models autoencoder

(nonlinear ICA)

Eg Boltzmann machine

Fully Visible Belief Nets

- Explicit formula based on chain (Frey et al, 1996)

- Disadvantages:

rule:

n

Pmodel () = DPmodel (%1 H Prmodel (Ti | 1, ...,
1=2 f

 O(n) sample generation cost

- Generation not controlled by 4
a latent code PlerCNN elephants

(van den Ord et al 2016)

Output
Dviation = B

Hidden Layer
Dviation = 4

Hidden Layer
Diation = 2

Hidden Layer
Dilation = 1

Input

Amazing quality
Sample generation slow

Two minutes to synthesize
one second of audio

Change of Variables

y = g(z) = pz(x) = py(g(x)) |det <8%(;)>

e.g. Nonlinear ICA (Hyvarinen 1999)

Disadvantages:

- Transformation must be
Invertible

- Latent dimension must
match visible dimension

64x64 ImageNet Samples
Real NVP (Dinh et al 2016)

Variational Autoencoder

(Kingma and Welling 2013, Rezende et al 2014)

log p(x) > log p(x)
— szq lng(CB z) _l_H()

CIFAR 10 samples
(Kingma et al 2016)

— Dxr (¢(2)[p(z | z))

Disadvantages:
-Not asymptotically
consistent unless g is

. perfect

-Samples tend to have
lower quality

Boltzmann Machines

p(x) = exp (~E(x. 2))

Z = ZZexp z))

- Partition function is intractable

- May be estimated with Markov chain methods

-+ Generating samples requires Markov chains too

GANSs

- Use a latent code

- Asymptotically consistent (unlike variational
methods)

- No Markov chains needed

- Often regarded as producing the best samples

- No good way to quantify this

Adversarial Nets Framework
D tries to make
D(G(z)) near 0,
) tries to be GG tries to make
(near 1 > D(G(z)) near 1
Differentiable
function D > <
: (x sampled from) (x sampled from) :
data model
leferentlable
< function G >

Input noise z)

Generator Network
r = G(z; H(G))

-Must be differentiable
- No invertibility requirement
@ - Trainable for any size of z

- Some guarantees require z to have higher
dimension than x

- Can make x conditionally Gaussian given z
but need not do so

Training Procedure

- Use SGD-style updates on two minibatches
simultaneously:

A minibatch of training examples
- A minibatch of generated samples

- Optional: run k steps of one player for every step of
the other player.

Minimax Game

1 1
TP = By, log D) — SExlog (1 - D (G(2)
JG) — _ (D)

-Equilibrium is a saddle point of the discriminator loss

-Resembles Jensen-Shannon divergence:
JSD(P,Q) = 0.5 DKL(P,M) + 0.5 DKL(Q,M)
where M=0.5P + 0.5Q

-Generator minimizes the log-probability of the discriminator
being correct

Exercise 1

1 1
TP = By, log D) — SExlog (1 - D (G(2)
JG) — _ (D)

- What is the solution to D(x) in terms of pgata and

Pgenerator ?

- What assumptions are needed to obtain this
solution?

Solution

- Assume both densities are nonzero everywhere

If not, some input values x are never trained, so
some values of D(x) have undetermined behavior.

- Solve for where the functional derivatives are zero:

0

(D) _
sD@)” "

Discriminator Strategy

Optimal D(x) for any pgata(@) and pmeodel () is always

pdata(w)

D(m) N pdata(aj) _I_pmodel(x)

Discriminator Data
\ -'“',4/
Estimating thisrato @ 777 ‘/I\/I

odel distribution
using supervised learning
IS

the key approximation i
mechanism used by GANs //// \\\
Z

Non-Saturating Game

1 1

JD) — -5 Cemopy. 10g D() — 5 7. log (1 — D (G(2)))
1

JG) — -5 i, log D (G(2))

-Equilibrium no longer describable with a single loss
-Generator maximizes the log-probability of the discriminator
being mistaken

-Heuristically motivated; generator can still learn even when
discriminator successfully rejects all generator samples

DCGAN Architecture

Most “deconvs” are batch normalized

128

256
512 N AN
\ L : A N

1024 r 16| . Stride 2 .
- ‘ . N N -5 } NV ’.

4 N8 el | 3

100z 1 | | == |- N R
g 5 =
: s ~p B :
Code Project and Stride 2 X
reshape Deconv 1 <
Deconv 2 6\4\
Deconv 3 R
Deconv4 o

Image

(Radford et al 2015)

DCGANSs for LSUN
Bedrooms

(Radford et al 215)

Vector Space Arithmetic

Man Woman
with glasses

Woman with Glasses

(Radford et al, 2015)

Is the divergence important?

q" = argmin, Dk (p||q) ¢" = argmin, Dk1.(q|/p)
— p(x) D — p(x)
P> * P \ *
= - ¢ () = | - q (z)
- - \
))
A a
Z Z
= =
@ @
Q e
o o
A A

Maximum likelihood Reverse KL

(Goodfellow et al 2016)

Modifying GANSs to do
Maximum Likelihood

1
J(D) — _5 Y~ Pdata logD() _

7@ = E.exp (o7 (D(G(2))))

1
2
)

i log (1 — D (G(2)))

When discriminator is optimal, the generator
gradient matches that of maximum likelihood

(“On Distinguishability Criteria for Estimating Generative
Models”, Goodfellow 2014, pg 5)

J(G)

Comparison of Generator Losses

° \ I | | |
O ‘\:

_5 L \‘
—10 —— Minimax 7
_15 | — Non-saturating heuristic)

—— Maximum likelihood cost
—20 | |
0.0 0.2 0.4 0.6 0.8

D(G(2))

(Goodfellow 2014)

1.0

Loss does not seem to explain

Takeaway: the approximation strategy
matters more than the loss

Labels improve subjective
sample quality

- Learning a conditional model p(ylx) often gives much
better samples from all classes than learning p(x) does
(Denton et al 2015)

+ Even just learning p(x,y) makes samples from p(x) look
much better to a human observer (Salimans et al 2016)

- Note: this defines three categories of models (no
labels, trained with labels, generating condition on
labels) that should not be compared directly to each
other

One-sided label smoothing

- Default discriminator cost:

cross_entropy(1l., discriminator(data))
+ cross_entropy (0., discriminator(samples))

* One-sided label smoothed cost (Salimans et al
2016):

cross_entropy(.9, discriminator(data))
+ cross_entropy (0., discriminator(samples))

Do not smooth negative
labels

cross_entropy(1l.-alpha, discri:

+ cross_entropy(beta, discri:

minator(sai

minator(data))

mples))

Reinforces current generator behavior

(1 o O‘)pdata(aj) + Bpmodel(m)

D(x) =

Pdata (w) + Pmodel (w)

Benefits of label smoothing

+ @Good regularizer (Szegedy et al 2015)

- Does not reduce classification accuracy, only
confidence

- Benetfits specific to GANS:

- Prevents discriminator from giving very large
gradient signal to generator

- Prevents extrapolating to encourage extreme
samples

Batch Norm

- Given inputs X={x"), x*3, .., xM}
- Compute mean and standard deviation of features of X

- Normalize features (subtract mean, divide by standard
deviation)

- Normalization operation is part of the graph

- Backpropagation computes the gradient through the
normalization

- This avoids wasting time repeatedly learning to undo the
normalization

Batch norm in G can cause
strong intra-batch correlation

. .
¥
=~ e -

A

v

Reference Batch Norm

- Fix a reference batch R={", F?, .., A™}
+ Given new inputs X={x", x®, .., xM}
- Compute mean and standard deviation of features of R

- Note that though R does not change, the feature values
change when the parameters change

- Normalize the features of X using the mean and standard
deviation from R

. Every x" is always treated the same, regardless of which
other examples appear in the minibatch

Virtual Batch Norm

- Reference batch norm can overfit to the reference batch. A partial

solution is virtual batch norm

- Fix a reference batch R={r'"), A2, .., A™)

. Given new inputs X={x\", x® ., x'™}

- For each x in X:

. Construct a virtual batch V containing both x and all of R
- Compute mean and standard deviation of features of V

. Normalize the features of x*) using the mean and standard
deviation from V

Balancing G and D

- Usually the discriminator “wins”

- This is a good thing—the theoretical justifications are based on
assuming D is perfect

- Usually D is bigger and deeper than G

- Sometimes run D more often than G. Mixed results.

»+ Do not try to limit D to avoid making it “too smart”
- Use non-saturating cost

- Use label smoothing

Non-convergence

- Optimization algorithms often approach a saddle
point or local minimum rather than a global
minimum

+ @Game solving algorithms may not approach an
equilibrium at all

Non-convergence in GANs

- Exploiting convexity in function space, GAN training is theoretically
guaranteed to converge if we can modify the density functions
directly, but:

- Instead, we modify G (sample generation function) and D
(density ratio), not densities

- We represent G and D as highly non-convex parametric functions

- “Oscillation”: can train for a very long time, generating very many
different categories of samples, without clearly generating better
samples

- Mode collapse: most severe form of non-convergence

Mode Collapse

min max V(G, D) # max min V(G, D)

- D in inner loop: convergence to correct distribution

- G in inner loop: place all mass on most likely point

Target

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

(Metz et al 2016)

Mode collapse causes low
output diversity

this small bird has a pink this magnificent fellow is Key- GAN (Reed 2016b) This work
breast and crown, and black almost all black with a red points A man in a orange jacket with sunglasses and a hat ski down a hill.

primaries and secondaries. crest, and white cheek patch.

g T | .’ S s " i W tenms layer in a blue polo shirt is looking down at the green court
the flower has petals that this white and yellow flower e
are bright pinkish purple have thin white petals and a X
with white stigma round yellow stamen .

(Reed et al, submitted to
ICLR 2017)

(Reed et al 2016)

Minibatch Features

- Add minibatch features that classify each example

by comparing it to other members of the minibatch
(Salimans et al 2016)

 Nearest-neighbor style features detect if a

minibatch contains samples that are too similar to
each other

Unrolled GANS

- Backprop through k updates of the discriminator to
prevent mode collapse:

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

(Metz et al 2016)

Some examples are strange!

Evaluation

-+ There is not any single compelling way to evaluate a
generative model

+ Models with good likelihood can produce bad samples
- Models with good samples can have bad likelihood

- There is not a good way to quantify how good samples are

- For GANSs, it is also hard to even estimate the likelihood

- See “A note on the evaluation of generative models,” Theis et
al 2015, for a good overview

Supervised Discriminator

Real

Hidden

units

(Odena 2016, Salimans et al 2016)

Conclusion

- GANSs are generative models that use supervised
learning to approximate an intractable cost function

* GANSs can simulate many cost functions, including
the one used for maximum likelihood

- Many potential applications to explore beyond
image generation!

