Dimensionality reduction. PCA. Kernel PCA.

e Dimensionality reduction
e Principal Component Analysis (PCA)
o Kernelizing PCA

e If we have time: Autoencoders
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What is dimensionality reduction?

e Dimensionality reduction (or embedding) techniques:

— Assign instances to real-valued vectors, in a space that is much
smaller-dimensional (even 2D or 3D for visualization).
— Approximately preserve similarity/distance relationships between

Instances.
e Some techniques:

— Linear: Principal components analysis
— Non-linear

x Kernel PCA

x Independent components analysis

x Self-organizing maps

x Multi-dimensional scaling

x Autoencoders
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What is the true dimensionality of this data?
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What is the true dimensionality of this data?
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Remarks

e All dimensionality reduction techniques are based on an implicit
assumption that the data lies along some low-dimensional manifold

e This is the case for the first three examples, which lie along a 1-
dimensional manifold despite being plotted in 2D

e In the last example, the data has been generated randomly in 2D, so no
dimensionality reduction is possible without losing information

e The first three cases are in increasing order of difficulty, from the point
of view of existing techniques.
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Simple Principal Component Analysis (PCA)

e Given: m instances, each being a length-n real vector.

e Suppose we want a 1-dimensional representation of that data, instead of
n-dimensional.

e Specifically, we will:

— Choose a line in R™ that “best represents” the data.
— Assign each data object to a point along that line.
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Reconstruction error

e Let the line be represented as b + av for b,v € R"*, a € R.
For convenience assume ||v|| = 1.

e Each instance x; is associated with a point on the line X; = b + a;V.

e We want to choose b, v, and the «; to minimize the total reconstruction
error over all data points, measured using Euclidean distance:

m
R=>|xi—%l
1=1
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A constrained optimization problem!

min - >3 (% — (b4 aiv)|?
w.rt. b,v,a;,1=1,...m
s.t. |v[[*=1

e This is a quadratic objective with quadratic constraint

e Suppose we fix a v satisfying the condition, and find the best b and «;
given this v

e So, we solve:

' = 1l i — (b V)2
min R rguglz_:HX (b + a;v)|

where R is the reconstruction error
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Solving the optimization problem (Il)

e We write the gradient of R wrt to «; and set it to O:

OR

S = 2||v||?e; — 2vx; +2bv=0=a; = v - (x; — b)
Qa;

where we take into account that ||v||? = 1.
e We write the gradient of R wrt b and set it to O:

va—meQiXi—FQ(iOéi)V—O (1)

e From above:
Z a; = ZVT(Xi —b)=v’ (Z X; — mb> (2)
i—1 i—1 i—1
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Solving the optimization problem (ll1)

e By plugging (2) into (1) we get:

vl <ZXZ — mb) vV = (sz — mb)
i=1 i=1
e This is satisfied when:

m 1
ZXZ_mb:OZ}b:E;XZ

1=1

e This means that the line goes through the mean of the data

e By substituting a;, we get: X; = b+ (vl (x; — b))v

e This means that instances are projected orthogonally on the line to get
the associated point.
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Example data
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Example with v « (1,0.3)
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Finding the direction of the line

e Substituting a; = v1(x; — b) into our optimization problem we obtain a

new optimization problem:

maxy Y., vi(x; —b)(x; — b)!v

s.t. |v|[*=1
e The Lagrangian is:
L(v,\)= ZVT(Xi —b)(x; —b)'v+ = A|v]?
i=1

o Let =" (x;—b)(x; —b)! be an n-by-n matrix, which we will call

the scatter matrix

e The solution to the problem, obtained by setting VL = 0, is: Sv = Av.
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Optimal choice of v

e Recall: an eigenvector u of a matrix A satisfies Au = Au, where A € R
is the eigenvalue.

e Fact: the scatter matrix, S, has n non-negative eigenvalues and n
orthogonal eigenvectors.

e The equation obtained for v tells us that it should be an eigenvector of

S.

e The v that maximizes v Sv is the eigenvector of S with the largest
eigenvalue
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What is the scatter matrix

e S is an n X n matrix with

m

S(k,1) = Y (xi(k) = b(k))(xi(1) — b(1))

1=1

e Hence, S(k,l) is proportional to the estimated covariance between the
kth and [th dimension in the data.
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Recall: Covariance

e Covariance quantifies a linear relationship (if any) between two random
variables X and Y.

Cov(X,Y) = E{(X — E(X))(Y — E(Y))}

e Given m samples of X and Y, covariance can be estimated as

where pix = (1/m) Y20 x; and py = (1/m) 322, yi.
e Note: Cov(X,X) = Var(X).
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Covariance example
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Example with optimal line: b = (0.54,0.52), v o (1,0.45)
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Remarks

e The line b+ av is the first principal component.

e The variance of the data along the line b + av is as large as along any
other line.

e b, v, and the a; can be computed easily in polynomial time.
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Reduction to d dimensions

e More generally, we can create a d-dimensional representation of our data
by projecting the instances onto a hyperplane b + alv; + ... + a%vy.

o |f we assume the v; are of unit length and orthogonal, then the optimal
choices are:

— b is the mean of the data (as before)
— The v; are orthogonal eigenvectors of S corresponding to its d largest

eigenvalues.
— Each instance is projected orthogonally on the hyperplane.
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Remarks

e b, the eigenvalues, the v;, and the projections of the instances can all
be computing in polynomial time.

e The magnitude of the j-largest eigenvalue, A, tells you how much
variability in the data is captured by the j* principal component

e So you have feedback on how to choose d!

e When the eigenvalues are sorted in decreasing order, the proportion of
the variance captured by the first d components is:

M Ag
MA o FAgF g1+ -+ Ay

e So if a "big" drop occurs in the eigenvalues at some point, that suggests
a good dimension cutoff
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Example: \; = 0.0938, Ao = 0.0007

The first eigenvalue accounts for most variance, so the dimensionality is 1
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Example: \; = 0.1260, Ay = 0.0054

The first eigenvalue accounts for most variance, so the dimensionality is 1
(despite some non-linear structure in the data)
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Example: A\ = 0.0884, Ao = 0.0725

e Each eigenvalue accounts for about half the variance, so the PCA-
suggested dimension is 2

e Note that this is the /inear dimension

e The true “non-linear” dimension of the data is 1 (using polar coordinates)
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Example: A\ = 0.0881, Ao = 0.0769

e Each eigenvalue accounts for about half the variance, so the PCA-
suggested dimension is 2

e In this case, the non-linear dimension is also 2 (data is fully random)

e Note that PCA cannot distinguish non-linear structure from no structure

e This case and the previous one yield a very similar PCA analysis
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Remarks

e Outliers have a big effect on the covariance matrix, so they can affect

the eigenvectors quite a bit

e A simple examination of the pairwise distances between instances can

help discard points that are very far away (for the purpose of PCA)

e |f the variances in the original dimensions vary considerably, they can

“muddle” the true correlations. There are two solutions:

— Work with the correlation of the original data, instead of covariance

matrix (which provides one type of normalization

— Normalize the input dimensions individually (possibly based on domain

knowledge) before PCA

e PCA is most often performed using Singular Value Decomposition (SVD)

e |n certain cases, the eigenvectors are meaningful; e.g. in vision, they can

be displayed as images ( “eigenfaces”)

COMP-652 and ECSE-608 - March 14, 2016
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Eigenfaces example

N

e A set of faces on the left and the corresponding eigenfaces (principal
components) on the right

e Note that faces have to be centred and scaled ahead of time

e The components are in the same space as the instances (images) and
can be used to reconstruct the images
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Uses of PCA

e Pre-processing for a supervised learning algorithm, e.g. for image data,
robotic sensor data

e Used with great success in image and speech processing
e Visualization
e Exploratory data analysis

e Removing the linear component of a signal (before fancier non-linear
models are applied)
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Difficult example

e PCA will make no difference between these examples, because the
structure on the left is not linear

e Are there ways to find non-linear, low-dimensional manifolds?
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Making PCA non-linear

e Suppose that instead of using the points x; as is, we wanted to go to
some different feature space ¢(x;) € RY

e E.g. using polar coordinates instead of cartesian coordinates would help
us deal with the circle

e In the higher dimensional space, we can then do PCA
e The result will be non-linear in the original data space!

e Similar idea to support vector machines
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PCA in feature space (I)
e Suppose for the moment that the mean of the data in feature space is

0, s0: 320 p(xs) =0

e [ he covariance matrix is:

e The eigenvectors are:
CVj :)\jVj,j — 1,N

e We want to avoid explicitly going to feature space - instead we want to
work with kernels:

K (x;,x5) = ¢(x;)" d(xy)
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PCA in feature space (ll)
e Re-write the PCA equation:

1 — .
m Z ¢(Xi)¢(xi)TVj =Ajv,g=1,...N
i=1

e So the eigenvectors can be written as a linear combination for features:

m

vi= ) ajd(x)

1=1

e Finding the eigenvectors is equivalent to finding the coefficients a;;, j =
1,...N,o=1,...m
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PCA in feature space (ll1)

e By substituting this back into the equation we get:

=3 ox)o(x)” (Z ajl¢(xl)> =) aqd(xi)
: =1 [=1

e \We can re-write this as:

13 ot (s ) = 2,3 ot

1=1 [=1

e A small trick: multiply this by ¢(xz)? to the left:

=3 o) 6(x) <Z anK (xi, %) ) = Zw Xi)" ¢(x)

1=1 =1

COMP-652 and ECSE-608 - March 14, 2016

35



PCA in feature space (I1V)

e We plug in the kernel again:

1 m m m |
_ZK(XI{:?Xi) <Z ale(Xi7XZ)> — )\j Zale(Xk,Xl),\V/], k

m <
=1 =1 =1

e By rearranging we get: K?a; = m)\,;Ka,
e We can remove a factor of K from both sides of the matrix (this will

only affect eigenvectors with eigenvalues 0, which will not be principle

components anyway):
Kaj = m)\jaj
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PCA in feature space (V)

e \We have a normalization condition for the a; vectors:
m m
T
= ZZ a;10k0(X1) qb(xk) =1=a;Ka; =1

e Plugging this into:
Kaj = m)\jaj

we get: \;jmaja; =1,V

e For a new point X, its projection onto the principal components is:

¢(X)TVJ — Z ajz¢(X)T¢(Xz) — Z asz(Xv X’L)

COMP-652 and ECSE-608 - March 14, 2016
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Normalizing the feature space

e In general, the features ¢(x;) may not have mean 0
e \We want to work with:

e The corresponding kernel matrix entries are given by:

~ ~

K (xp,x1) = ¢(x1)" p(x;)

e After some algebra, we get:

~

where 1, ,,, is the matrix with all elements equal to 1/m
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Summary of kernel PCA

1. Pick a kernel

. Construct the normalized kernel matrix K of the data (this will be of
dimension m X m)

. Find the eigenvalues and eigenvectors of this matrix \;, a;

. For any data point (new or old), we can represent it as the following set

of features:
m

Y; = Zaj’]:K(X7X'L'),j =1,...m

i=1
. We can Ilimit the number of components to & < m for a more
compact representation (by picking the a’s corresponding to the highest
eigenvalues)
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Representation obtained by kernel PCA

e Each y; is the coordinate of ¢(x) along one of the feature space axes v;
e Remember that v; = > " a;;d(x;) (the sum goes to k if k < m)
e Since v, are orthogonal, the projection of ¢(x) onto the space spanned

by them is:
IIg(x) = Z YiVi = S: Yj S: ajiP(x;)
j=1 j=1 i=1

(again, sums go to k if kK < m)
e The reconstruction error in feature space can be evaluated as:

|¢(x) — ()]

This can be re-written by expanding the norm; we obtain dot-products
which can all be replaced by kernels

e Note that the error will be 0 on the training data if enough v; are
retained

COMP-652 and ECSE-608 - March 14, 2016 40



Alternative reconstruction error measures

e An alternative way of measuring performance is by looking at how well
kernel PCA preserves distances between data points

e In this case, the Euclidian distance in kernel space between points ¢(x;)
and gb(Xj), dq;j, IS:

[¢xi) — d(x5) || = K (x4, %) + K(x5,%;) — 2K (x4, %;)

e The distance ciz-j between the projected points in kernel space is defined
as above, but with ¢(x;) replaced by I1¢p(x;).

e The average of d;; — aAlZ-j over all pairs of points is a measure of
reconstruction error

e Note that reconstruction error in the original space of the x; is very
difficult to compute, because it requires taking Il¢(x) and finding its
pre-image in the original feature space, which is not always feasible
(though approximations exist)
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Example: Two concentric spheres

two concentric spheres data
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e Colours are used for clarity in the picture, but the data is presented
unlabelled

e We want to project form 3D to 2D

lWang, 2012
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Example: Two concentric spheres - PCA

first 2 PCA features
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Note that PCA is unable to separate the points from the two spheres

>Wang, 2012
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Example: Kernel PCA with Polynomial Kernel (d = 5)

feature 2

1.5+

0.5

3(10

12

first 2 kernel PCA features

*
o

class 1
class 2

feature 1

x 10

3

e Points from one sphere are much closer together, the others are scattered
e The projected data is not linearly separable

3Wang, 2012
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Example: Kernel PCA with Gaussian Kernel (o = 20)

first 2 kernel PCA features
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e Points from the two spheres are really well separated
e Note that the choice of parameter for the kernel matters!

e Validation can be used to determine good kernel parameter values

*Wang, 2012
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Example: De-noising images

Original data
1 PY 3 % 1 2 W A 0 )
Data corrupted with Gaussian noise
B 1 1
Result after linear PCA
I ¥ el ) 2 L

Result after kernel PCA, Gaussian kernel
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PCA vs Kernel PCA

e Kernel PCA can give a good re-encoding of the data when it lies along
a non-linear manifold

e The kernel matrix is m x m, so kernel PCA will have difficulties if we
have lots of data points

e In this case, we may need to use dictionary methods to pick a subset of
the data

e For general kernels, we may not be able to easily visualizethe image of
a point in the input space, though visualization still works for simple
kernels
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Locally Linear Embedding

® X1, - ,X,;, € R" lies on a k-dimensional manifold.
= Each point and its neighbors lie close to a locally linear patch of the
manifold.

e We try to reconstruct each point from its neighbors:
: 2
min Z I%; — Z Wi,
i j

s.t. W1=1and W, ; =0 if x; € neighbors(x;)

= For each point the weights are invariant to rotation, scaling and
translations: the weights W, ; capture intrinsic geometric properties
of each neighborhood.

e These local properties of each neighborhood should be preserved by the

embedding:
Z |zi — ZW 32

Zm, ERk
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PCA vs Locally Linear Embedding

e
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[Saul, L. K., & Roweis, S. T. (2000). An introduction to locally linear

embedding.]
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Multi-dimensional scaling

e Input:
— An m x m dissimilarity matrix d, where d(z, j) is the distance between
instances x; and Xx;
— Desired dimension k of the embedding.
e Output:

— Coordinates z; € R for each instance i that minimize a ‘“stress”
function quantifying the mismatch between distances as given by d
and distances of the data representation in R¥.
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Stress functions

e Common stress functions include:

— The least-squares or Kruskal-Shephard criterion:

— The Sammon mapping:

(4, 5) — Nlzi — 7))
2.2 d(i, j) |

i=1 j#i

which emphasizes getting small distances correct.

e Gradient-based optimization is usually used to find z;
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Other dimensionality reduction methods

e Independent component analysis (ICA)

e More generally: factor analysis

e Local linear embeddings (LLE)

e Neighborhood component analysis (NCA)

e Some methods do dimensionality reduction jointly with a supervised

learning task, or a set of such tasks
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A generalizing perspective

o Let Y be observed data and X be hidden (latent) variables or factors
that generate the data

e The goal is to find how many such variables there are, and the model
through which they generate the data

o E g Mixture models: K hidden variables, Gaussian conditional
distributions

e E.g. PCA: K hidden variables, Gaussian models
e E.g. ICA: K hidden variables, non-Gaussian models

SRoweis and Gharamani, 1999
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Graphical models

e More generally, the data (yellow circles) can be generated by a more

complex structure.

e \We can model all variables and their interactions using a graph structure
e Local probabilistic models describe how neighbours influence each other
e The overall model represents a joint probability distribution over all

variables (observed and latent)
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More generally: Autoencoders

e \We have some data and try to learn a latent variable space that explains
it
e The goal is to minimize reconstruction error

e In PCA, we used squared loss - this indicates an implicit Gaussian
assumption

e More generally, from data bfy we obtain a mapping z, then we can use
an inverse mapping g to go back from z to y

e \We want to maximize the likelihood of the data
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More generally: Autoencoders

z 2=/
Decoder Encoder
g(.) 1)

v = g(z) >
Data y

L = —logp(ylg(z))
L=y—g(f)l3
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Two views of auto encoders

e We just implement functions for f, g (e.g. lots of sigmoids in layers) -
this gives rise to deep auto encoders, trained by gradient descent

e We commit to full-blow probabilistic models, treating z as probabilistic
random variable - this gives rise to variational auto encoders
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