
Undirected graphical models

• Semantics of probabilistic models over undirected graphs

• Parameters of undirected models

• Example applications
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Undirected graphical models

• So far we have used directed graphs as the underlying structure of a
Bayes net

• Why not use undirected graphs as well?

E.g., variables might not be in a “causality” relation, but they can still
be correlated, like the pixels in a neighborhood in an image

• An undirected graph over a set of random variables {X1, . . . Xn} is
called a undirected graphical model or Markov random field (MRF)
or Markov network
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Conditional independence

• We need to be able to specify, for a given graph, if X⊥⊥Z|Y , for any
disjoint subsets of nodes X, Y , Z.

• In directed graphs, we did this using the Bayes Ball algorithm

• In undirected graphs, independence can be established simply by graph
separation: if every path from a node in X to a node in Z goes through
a node in Y , we conclude that X⊥⊥Z|Y
• Hence, independence can be established by removing the nodes in the

conditioning set then doing reachability analysis on the remaining graph.

• What is the Markov blanket of a node in an undirected model?
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How expressive are undirected models?

• Are undirected models more expressive than directed models?

I.e. for any directed model, can we find an undirected model that satisfies
exactly the same conditional independence relations?

• Are undirected models less expressive?

I.e. for any undirected model, can we find a directed model that satisfies
exactly the same conditional independencies?
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Example: An undirected graph

W

X

Y

Z

Can we find a directed graph that satisfies the same independence
relations?
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Example: A directed graph

Y

X Z

Can we find an undirected graph that satisfies the same independence
relations?
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Expressiveness of undirected models

• Undirected models are neither more nor less expressive than directed
models; they are simply different

• The semantics of an undirected model naturally capture correlation of
r.v.s, not causation

• If you ever want, in an application, to write a Bayes net with cycles, it is
a sign that the right model is undirected.
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Local parameterization

• In directed models, we had local probability models (CPDs) attached
to every node, giving the conditional probability of the corresponding
random variable given its parents

• The joint probability distribution expressed by a directed model factorizes
over the graph

• This means that the joint can be written as a product of “local” factors,
which depend on subsets of the variables.

• We want a similar property for directed models.

• But what should the local factors be?
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Local parameterizations

• Consider a pair of nodes X and Y that are not directly connected through
an arc

• According to the conditional independence interpretation, X and Y are
independent given all the other nodes in the graph

X⊥⊥Y |{X1, . . . Xn} −X − Y

• Hence, there must be a factorization in which they do not appear in the
same factor

• This suggests that we should define factors on cliques

Recall that a clique is a fully connected subset of nodes (i.e., there is an
arc between every pair of nodes)
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Example: what are the cliques?

D

A B

C
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Defining parameters on cliques

The main idea is that if variables do not have an arc between them,
they are conditionally independent given the rest of the graph, and hence
should not be in the same local model.

D

A B

C
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Important result (for strictly positive distributions)

• Consider the family of probability distributions that respect all the
conditional independencies implied by an undirected graph G. These are
the distributions that satisfy the global Markov properties of the graph

• Consider the family of probability distributions defined by ranging over all
allowed maximal clique potential functions. These are the distributions
that factorize on the graph G.

• The Hammersley-Clifford theorem shows that these two families are
identical.
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Clique potentials

• We will represent the joint distribution as a product of clique potentials:

p(X1 = x1, . . . Xn = xn) =
1

Z

∏
cliques C

ψC(xC)

where xC are the values for the variables that participate in clique C
and Z is a normalization constant, to make probabilities sum to 1:

Z =
∑
x

∏
cliques C

ψC(xC)

• Without loss of generality, we can consider only maximal cliques

These are the cliques that cannot be extended with other nodes without
losing the fully connected property
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Example

D

A B

C
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Normalizing constant

• The normalizing constant Z can be ugly to compute, since we have to
sum over all possible assignments of values to variables

• Depending on the shape of the graph, the summation could be done
efficiently

• However, if we are interested in conditional probabilities, we do not even
need to compute it! (why?)
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Interpretation of clique potentials

• Potentials are NOT probabilities (conditional or marginal)

• But they do have a natural interpretation as “agreement” or “energy”

• Example: spin glass model
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1D spin glass
Xi_1iX +1iX

(a)

(b)

_1ix

xi

xi

x +1i

1

1_
1_ 1

0.2

0.2

1.5

1.5

1

1_
1_ 1

0.2

0.2

1.5

1.5

COMP-652 and ECSE-608, February 16, 2017 17



More on spin glasses

• In general, a spin glass is a collection of magnetic moment (spins) whose
low temperature state is disordered.

• They have been studied a lot in statistical physics and they can model
many practical materials

• These models have two important features:

– There is competition among the interactions between moments, so
there is no configuration of spins that is favored by all interactions;
this is called frustration

– Interactions are at least partially random

• There are many states whose energy is locally optimal (low)

• Finding such a state can be done by probabilistic inference.
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Boltzmann (Gibbs) distribution

• The fact that potentials must be non-negative is annoying

• We can escape from that by using the exponential function, which is
non-negative:

ψC(xC) = e−HC(xC)

• Now we have to define HC(xC), which can be anything!

• Moreover, the joint also has a nice form:

p(x) =
1

Z

∏

C

e−HC(xC) =
1

Z
e−

∑
CHC(xC) =

1

Z
e−H(x)

where H(x) =
∑
CHC(xC) is the “free energy”

• Hence, p is represented using a Boltzmann distribution
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Special case: Ising Model

• All r.v.s are binary and nodes are arranged in a regular fashion and
connected only to geometric neighbors.
• E.g., Spin glass in 2D:

• Energy has the form:

H(x) =
∑

i,j

βijxixj +
∑

i

αixi
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Applications of the Ising model

• Very popular for explaining the effect of “society” or “environment” on
a “component” or “individual”

– Flocking behavior
– Behavior of neural networks
– Sociology studies

• In all these cases, the effort is both to find, from the data, what the
model should be, as well as to use inference in order to determine what
will be the next state of minimum energy to which the model “settles”
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Choosing the parameters of a Markov network

• These nets often have a regular structures, and parameters may be similar
(or identical) in all cliques of a given type

• As a result, optimization or learning are often the preferred ways of
coming up with parameters
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A real example: Texture synthesis

• You are given a small patch of texture and want to produce a “similar”
larger patch

• We can define a Markov random field over pixels, e.g:

• The “potentials” favor certain configurations of pixels over others

• We get the texture by doing inference (and sometimes learning) for this
model
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More applications

• MRFs are used extensively in computer vision, e.g for labeling tasks

• Labeling can be low-level, like labeling edges or other pixel configurations,
or high-level, like labeling objects in an image

• Images often obey constraints (e.g. smoothness of surfaces, texture)
which can be captured easily as a MRF structure

• Labeling then becomes a search for a pattern of minimum energy, which
is often solved by optimization

• Learning can help establish the parameters of the model.
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Example

Example: An undirected graph

W

X

Y

Z

Can we find a directed graph that satisfies the same independence

relations?

January 14, 2008 5 COMP-526 Lecture 5

P (X,Y,W,Z) ∝ ψ(W,X)ψ(W,Y )ψ(Y,Z)ψ(Z,X)

∝ e−(E(W,X)+E(W,Y )+E(Y,Z)+E(Z,X))

• In general, potentials are defined over cliques of nodes

• A clique is a set of nodes where all pairs are interconnected

• In such a case, all nodes have to agree on the value
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Belief propagation updates

• Node Xj computes the following message for node Xi

mji(xi) =
∑

xj


ψE(xj)ψ(xi, xj)

∏

k∈neighbors(xj)−{xi}

mkj(xj)




Note that it aggregates the evidence of Xj itself, the evidence received
from all neighbors except Xi, and “modulates” it by the potential
between Xj and Xi.

• The desired query probability is computed as:

p(y|x̂E) ∝ ψE(y)
∏

k∈neighbors(Y )

mky(y)
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Practical considerations

• Messages do not have to be normalized, but often they are (to avoid
numerical problems)

• Order of the updates is important

• In 2D lattices, people often sweep systematically (e.g. up-down-left-right)

• If there is oscillations, one can “dampen” it using momentum

• The cost per iteration is squared in the number of possible variable values

• Most likely states can be calculated using a max instead of a sum
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Example: Results for image segmentationResults

Binary Segmentation

Labels - {foreground, background}

Unary Potentials: -log(likelihood) using learnt fg/bg models

Szeliski et al. , 2008

Pairwise Potentials:     0, if same labels

                       1 - !exp(|Da - Db|), if different labels

Belief Propagation
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Learning in undirected models

• Recall from the example:

P (X,Y,W,Z) ∝ ψ(W,X)ψ(W,Y )ψ(Y, Z)ψ(Z,X)

∝ e−(E(W,X)+E(W,Y )+E(Y,Z)+E(Z,X))

• The log-likelihood has some energy terms, which can be modelled
parametrically (eg. linear combination of inputs, correlations...)

• Good part: these terms have no restrictions on the parameters, so
gradient-based methods would work

• Bad news: There is a normalization (lost in the proportionality above)
which means that learning cannot be broken down locally over just nodes
or cliques
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Maximum likelihood approach

• Consider the discrete case, and let N(xC) be the number of times the
values xC occur in the data, and let N be the number of instances.

• The log likelihood is:

logL(ψ|D) =

N∑

i=1

log p(xi1, . . . x
i
n) =

N∑

i=1

log
1

Z

∏

C

ψc(xC)

=


∑

C

∑

xC

N(xC) logψC(xC)


−N logZ

• So the counts for each clique, N(xC), are sufficient statistics

• The logZ term will cause parameters estimation to be coupled in general.
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Gradient-based approach

• Taking the derivative of the log likelihood wrt the parameters:

∂ logL

∂ψC(xC)
=

∑
C

∑
xC

N(xC)

ψC(xC)

−N 1

Z

∂

∂ψC(xC)

∑
x1,...xn

∏
C′
ψC′(xC′)

This is now a system of nonlinear equations

• Working on the last term we get:

∂ logZ

∂ψC(xC)
=

p(xC)

ψC(xC)

where p(xC) is the marginal probability of xC

• By setting the derivatives to 0 we get: pML(xC) =
N(xC)
N

This is nice, but how do we get parameters from here?
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Revisiting the log-likelihood

• At the maximum, we have:

p̂(xC)

ψC(xC)
=

p(xC)

ψC(xC)

• Suppose we started with a guess for the parameters, ψ0
C,∀C. This would

allow us to compute marginal under the current guess, p0(xC)

• Next we re-compute the parameters so that we get something more like
the equality above:

ψ1
C(xC) = ψ0

C(xC)
p̂(xC)

p0(xC)

• We will continue this until the change in parameters is insignificant
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Iterative proportional fitting

• Start with a guess ψ0

• Repeat:

ψt+1
C (xC) = ψtC(xC)

p̂(xC)

pt(xC)
,∀C

• This is a fixed point algorithm and will converge in the limit

• Convergence happens in a finite number of iterations for decomposable
models, i.e. trees and similar structures.
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For larger problems

• The algorithm works the same way except instead of working with ψ, we
work with the energy terms, E

• Each E is parameterized using features (e.g. as a linear function of
features)

• Gradients are taken wrt the parameters of the E functions

• The algorithm has very similar convergence properties, but the features
allow a bias-variance trade-off
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Example: Point cloud data

a) Robot and campus map b) Segmentation Results

SVM Voted-SVM AMN

Figure 1. a) The robot and a portion of a 3D scan range map of Stanford University. b) Scan seg-
mentation results obtained with SVM, Voted-SVM and AMN predictions. (Color legend: buildings/red,
trees/green, shrubs/blue, ground/gray).

as background. For simplicity of exposition, we focus our
discussion to pairwise Markov networks, where nodes and
edges are associated with potentials φi(Yi) and φij(Yi, Yj),
ij ∈ E (i < j). In our task, edges are associated with links
between points in the scan, corresponding to physical prox-
imity; these edges serve to correlate the labels of nearby
points. A node potential φi(Yi) specifies a non-negative
number for each value of the variable Yi. Similarly, an
edge potential specifies non-negative number for each pair
of values of Yi, Yj . Intuitively, a node potentials encodes a
point’s “individual” preference for different labels, whereas
the edge potentials encode the interactions between labels
of related points. The joint distribution specified by the net-
work is

Pφ(y) =
1

Z

N�

i=1

φi(yi)
�

ij∈E
φij(yi, yj),

where Z is the partition function given by Z =�
y�
�N

i=1 φi(y
�
i)
�

ij∈E φij(y
�
i, y

�
j). The maximum a-

posteriori (MAP) inference problem in a Markov network
is to find arg maxy Pφ(y).
We further restrict our attention to an important sub-

class of networks, called associative Markov networks
(AMNs) [21] that allow effective inference using graph-
cuts [8, 13]. These associative potentials generalize the
Potts model [16], rewarding instantiations where adjacent
nodes have the same label. Specifically, we require that
φij(k, k) = λk

ij , where λk
ij ≥ 1, and φij(k, l) = 1, ∀k �= l.

We formulate the node and edge potentials in terms of

the features of the objects xi ∈ IRdn and features of the re-
lationships between them xij ∈ IRde . In 3D range data, the
xi might be the spin image or spatial occupancy histograms
of a point i, while the xij might include the distance be-
tween points i and j, the dot-product of their normals, etc.
The simplest model of dependence of the potentials on the
features is log-linear combination: log φi(k) = wk

n · xi

and log φij(k, k) = wk
e · xij , where wk

n and wk
e are label-

specific row vectors of node and edge parameters, of size dn

and de, respectively. Note that this formulation assumes that
all of the nodes in the network share the same set of weights,
and similarly all of the edges share the same weights. Stat-
ing the AMN restrictions in terms of the parameters w, we
require that wk

e · xij ≥ 0. To ensure that wk
e · xij ≥ 0, we

simply assume that xij ≥ 0, and constrain wk
e ≥ 0.

The MAP problem for AMNs can be solved efficiently
using a min-cut algorithm. In the case of binary labels
(K = 2), the min-cut procedure is guaranteed to return
the optimal MAP. For K > 2, the MAP problem is NP-
hard, but a procedure proposed by Boykov et al. [1], which
augments the min-cut algorithm with an iterative procedure
called alpha-expansion, guarantees a factor 2 approxima-
tion of the optimal solution.
An alternative approach to solving the MAP inference

problem is based on formulating the problem as an inte-
ger program, and then using a linear programming relax-
ation [2, 12]. This approach is slower in practice than the
iterated min-cut approach, but has the same performance
guarantees [21]. Importantly for our purposes, it forms the

3

1

• 3 approaches: SVM, Voted SVM (takes majority label over the pixel and
its neighbors), MRF

• Arches are much better maintained in the MRF, because it uses the
whole “context” of the building

1Anguelov et al, CVPR 2004
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