
COMP 652 and ECSE 608: Machine Learning - Assignment 1

Posted Thursday, January 19, 2017
Due Thursday, February 2, 2017

You should submit an archive of your code, as well as a pdf file with your answers (either typed or

scanned), uploaded to MyCourses. If you cannot access MyCourses, let us know ASAP. Assignments

must be submitted by 11:59pm EST one the day the assignment is due in order to incur no penalties.

1. [55 points] Regression

For this exercise, you will experiment with regression, regularization and cross-validation. You are

provided with a set of data in files hw1x.dat and hw1y.dat. You are allowed to use any programming

language of your choice (Python, Matlab, R, etc).

(a) [5 points] Load the data into memory. Make an appropriate X matrix and y vector. Do not

forget to add a constant input equal to 1!

(b) [5 points] Split the data at random into one set (Xtrain,ytrain) containing 80% of the instances,

which will be used for training + validation, and a testing set Xtest,ytest) (containing remaining

instances).

(c) [5 points] Give the objective of logistic regression with L2 regularization.

(d) [5 points] Run logistic regression on the data usingL2 regularization, varying the regularization

parameter λ ∈ {0, 0.1, 1, 10, 100, 1000}. Plot on one graph the average cross-entropy for the

training data and the testing data (averaged over all instances), as a function of λ (you should

use a log scale for λ). Plot on another graph the L2 norm of the weight vector you obtain. Plot

on the third graph the actual values of the weights obtained (one curve per weight). Finally,

plot on a graph the accuracy on the training and test set. Explain briefly what you see.

(e) [5 points] Re-format the data in the following way: take each of the input variables, and feed

it through a set of Gaussian basis functions, defined as follows. For each variable (except the

bias term), use 5 univariate basis functions with means evenly spaced between -10 and 10 and

variance σ. You will experiment with σ values of 0.1, 0.5, 1, 5 and 10.

(f) [5 points] Using no regularization and doing regression with this new set of basis functions,

plot the training and testing error as a function of σ (when using only basis functions of a

given σ). Add constant lines showing the training and testing error you had obtained in part c.

Explain how σ influences overfitting and the bias-variance trade-off.

(g) [5 points] Add in all the basis function and perform regularized regression with the regular-

ization parameter λ ∈ {0, 0.1, 1, 10, 100, 1000, 10000}. Plot on one graph the average cross-

entropy error for the training data and the testing data, as a function of λ (you should use a

log scale for λ). Plot on another graph the L2 norm of the weight vector you obtain. Plot on

a different graph the L2 norm of the weights for the set of basis functions corresponding to

each value of σ, as a function of λ (this will be a graph with 5 lines on it). Explain briefly the

results.

(h) [5 points] Explain what you would need to do if you wanted to design a set of Gaussian basis

functions that capture relationships between the inputs. Explain the impact of this choice on

1



the bias-variance trade-off. No experiments are needed (although you are welcome to explore

this on your own).

(i) [10 points] Suppose that instead of wanting to use a fixed set of evenly-spaced basis functions,

you would like to adapt the placement of these functions. Derive a learning algorithm that

computes both the placement of the basis function, µi and the weight vector w from data

(assuming that the width σisfixed. You should still allow for L2 regularization of the weight

vector. Note that your algorithm will need to be iterative.

(j) [5 points] Does your algorithm converge? If so, does it obtain a locally or globally optimal

solution? Explain your answer.

2. [35 points] Kernelized logistic regression

(a) [10 points] Following the same reasoning as discussed in class for linear regression, derive a

dual view for the logistic regression algorithm (in which we have parameters associated with

each point). More specifically, take the cross-entropy error function that logistic regression is

optimizing. Instead of using a vector of parameters w, you will use ΦTa, where ais a new

parameter vector with one entry for every instance. Then derive a learning algorithm which

optimizes the error function with respect to a. If you want to use regularization, use the L2

norm. Note that in this case there is no closed-form solution, you will instead write a gradient-

based update rule.

(b) [10 points] Provide an implementation of your algorithm using a polynomial kernel, K(x, z) =
(x · z+ 1)d, for the dataset given in hw1x.dat and hw1y.dat (where d is the kernel order).

(c) [10 points] Experiment with plain logistic regression and polynomial logistic regression with

d = 1, 2, 3 on this data set, performing cross-validation as before. Report the training and

testing cross-entropy and accuracy. Based on this data, explain the effect of the width on the

approximator.

(d) [5 points] What are the advantages and disadvantages of kernelized logistic regression over the

usual version, based on your investigation? Explain your answer.

3. [10 points] Kernels

In this problem, we consider constructing new kernels by combining existing kernels. Recall that

for some function K(x, z) to be a kernel, we need to be able to write it as a dot product of vectors

from some high-dimensional feature space:

K(x, z) = φ(x)Tφ(z)

Mercer’s theorem gives a necessary and sufficient condition for a function K to be a kernel: its

corresponding kernel matrix has to be symmetric and positive semidefinite.

Suppose that K1(x, z) and K2(x, z) are kernels over Rn × Rn. For each of the cases below, state

whether K is also a kernel. If it is, prove it. If it is not, give a counterexample. You can use either

Mercer’s theorem, or the definition of a kernel as needed.

(a) K(x, z) = aK1(x, z) + bK2(x, z), where a, b > 0 are real numbers

(b) K(x, z) = K1(x, z)K2(x, z)
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