
Lecture 29: Hash tables

Doina Precup
With many thanks to Prakash Panagaden and Mathieu Blanchette

March 19, 2014

1 Dictionaries
In many applications, we need to maintain a collection of data in which elements have unique
identifiers or keys. For example, maybe we need to maintain information about all McGill students;
each student has a unique student ID. A collection of pairs of the form (key, information) is often
called a dictionary (by analogy with word dictionaries, in which the word is the key and the
associated meaning is the information). Dictionaries have to support the following operations:

• Object find(key) - retrieve the information corresponding to a given key

• void insert(key, information) - insert a pair in the dictionary

• void delete(key) - remove the information associated with the given key

Optionally, we can also modify the information associated with a given key (but of course, this
could be implemented by a delete and insert pair of operations). We will assume that the set of
possible keys is ordered and finite (e.g. integers, strings of a finite length, etc).

So far, we have discussed several methods that are useful for maintaining dictionaries: arrays,
linked lists, and binary search trees (heaps are used for priority queues, and as such, do not support
efficient search of arbitrary keys). All have their advantages and disadvantages, in terms of the
time it takes to search information, insert and delete new elements.

For example, as you may recall, in a linked list, finding or removing an element will take O(n)
in the worst case, where n is the number of elements (insertion can be done in O(1), if we always
insert at one end of the list). In a sorted array, search takes O(log n), but insertion and removal will
take O(n) in the worst case (as we may have to shift the content of the array). In a binary search
tree, all the operations take O(k) in the worst case, where k is the depth of the tree. If we balance
the tree, this will be O(log n), but the balancing requires a bit more memory and trickier code.

Today we discuss a new data structure, called a hash table, which is often the preferred solution
in practice. As we will see, if we are a bit careful, a hash table will allow us to do most operations
in O(1) (even though the worst case will not be as good).

1

2 Hash tables
Suppose that we know that we will get entries with integer keys between 0 and K − 1. Then we
could use an array of size K to store the information associated with the keys. The Java code
would look roughly as follows:

public class Dictionary {
private Object a[] = new Object(k); //array to hold the information
//...
public Object find (int key) {return a[key];}
public void insert (int key, Object info) {a[key] = info;}
public void delete(int key) {a[key]=null; }

}

Note that all these operations are O(1)! This is really nice, but there is a catch: if K can be
very large, then we will need a huge array to store the information, so we may not have enough
memory to do this. Moreover, in many practical applications, not all keys need to be stored at the
same time; instead, at any given time, the real number of elements that we need is often much
smaller than K. For example, McGill’s ID numbers are 9 digits long, so the maximum number of
keys is 109 = 1, 000, 000, 000. But only about 30, 000 students are enrolled at any given time. If
we used an array of size 109, it would be a huge waste of resources, as the array would be very
sparsely populated. We would like to use a data structure which takes advantage of the fact that
only a small fraction of entries are populated. This is precisely the goal of a hash table.

In a hash table, we will use an array of size B � K to hold the dictionary. The keys will be
mapped to indices in this array by a function f : {0 . . . K − 1} → {0, . . . B− 1}, called a hashing
function. This is illustrated below:

Hash tables

Lecture 26

Dictionary ADT

• Reminder: A dictionary stores pairs
 (key, information)

• Operations:

– find(key k)

– insert(key k, info i)

– remove(key k)

• Binary Search Trees implement all these
operations in time O(h), where h is the height of
the tree, which is O(log n) if we maintain the tree
balanced

• We can sometimes do better...

Hash tables

• Suppose keys are integers between 0 and K-1

• Then, use an array A[0...K-1] of type "info"
to store the dictionary:

– insert(key k, info i): A[k] = i;

– remove(key k): A[k] = null;

– find(key k): return A[k]

• Running time: All operations are O(1)

• It's a miracle! Except that...

Problems with direct

 array implementation

• If K is large, the array will be very big

– For McGill student ID, K = 1 000 000 000

• Requires large amount of memory:

– K may be very large

– Memory used is independent of the number of items

actually stored in the dictionary.

• An algorithm for printAll() would run in time O(K)

• Only seems to work if key is an integer

Hash functions
Idea: - Choose a value B much smaller than K.

- Dictionary will be stored in array of size B

- Map the K possible keys to integer 0…B-1
 using a hash function f: [0...K-1] ! [0...B-1]

Space of keys: 0 1 2 K-1

Hashed keys: 0 1 2 B-1

Define A as an array of B elements

insert(key k, info i): A[f(k)] = i;

remove(key k): A[f(k)] = null;

find(key k): return A[f(k)];

Hash function f

Hash tables

• One big problem…

• Solution: Each element of the array (bucket) is itself
a dictionary, implemented with linked-list, binary
search tree, or a hash table...

Hash table A:

insert(key k, info i): A[f(k)].insert(k, i);

remove(key k, info i): A[f(k)].remove(k);

find(key k): return A[f(k)].find(k);

 | | | | | | | | | | | |

 0 1 2 3 4 5 6 7 8 9 ... B-1

Of course, now there is no guarantee that every element will be mapped to a different location in
the array: f may map elements with different keys to the same table entry either because the table
is too small, or just because of the way f works. This is called a collision. How do we handle it?
The basic idea is to have a bucket in each array entry, instead of a simple entry:

Hash tables

Lecture 26

Dictionary ADT

• Reminder: A dictionary stores pairs
 (key, information)

• Operations:

– find(key k)

– insert(key k, info i)

– remove(key k)

• Binary Search Trees implement all these
operations in time O(h), where h is the height of
the tree, which is O(log n) if we maintain the tree
balanced

• We can sometimes do better...

Hash tables

• Suppose keys are integers between 0 and K-1

• Then, use an array A[0...K-1] of type "info"
to store the dictionary:

– insert(key k, info i): A[k] = i;

– remove(key k): A[k] = null;

– find(key k): return A[k]

• Running time: All operations are O(1)

• It's a miracle! Except that...

Problems with direct

 array implementation

• If K is large, the array will be very big

– For McGill student ID, K = 1 000 000 000

• Requires large amount of memory:

– K may be very large

– Memory used is independent of the number of items

actually stored in the dictionary.

• An algorithm for printAll() would run in time O(K)

• Only seems to work if key is an integer

Hash functions
Idea: - Choose a value B much smaller than K.

- Dictionary will be stored in array of size B

- Map the K possible keys to integer 0…B-1
 using a hash function f: [0...K-1] ! [0...B-1]

Space of keys: 0 1 2 K-1

Hashed keys: 0 1 2 B-1

Define A as an array of B elements

insert(key k, info i): A[f(k)] = i;

remove(key k): A[f(k)] = null;

find(key k): return A[f(k)];

Hash function f

Hash tables

• One big problem…

• Solution: Each element of the array (bucket) is itself
a dictionary, implemented with linked-list, binary
search tree, or a hash table...

Hash table A:

insert(key k, info i): A[f(k)].insert(k, i);

remove(key k, info i): A[f(k)].remove(k);

find(key k): return A[f(k)].find(k);

 | | | | | | | | | | | |

 0 1 2 3 4 5 6 7 8 9 ... B-1

A bucket can be a linked list, another array, a binary search tree, or even another hash table. If we
use linked lists for each bucket, the Java code above will be modified as follows:

public class Dictionary {

2

private LinkedList a[k]; //array to hold the information
//...
private int hash(int n) {//... };
public Object find (int key) {return a[hash(key)].getFirst();}
public void insert (int key, Object info)

{a[hash(key)].insert(key, info);}
public delete(int key) {a[hash(key)].delete(); }
}

Now, the complexity of these operations will be determined by the data structure used for the buck-
ets, and by how well the hash function distributes the data in the buckets. In Java, the HashMap
class provides a useful hash table implementation, and we will use it later in the course.

3 Hash functions
Having a good hash function is really key to a good hash table. For example, assume that each
bucket is a linked list. Then in the worst case, the hash function will map all elements into one
bucket, which will be of size n. On the other hand, assuming that all entries are equally likely,
a good hash function will make roughly equal lists, each of size n/B, where B is the number of
entries in the hash table.

If not all entries have to be accessed with similar frequency, we would like the hashing function
to map entries which are accessed a lot by themselves, while entries that are accessed little can be
mapped together. This will give a good average access cost.

There is a whole literature on “good” hashing functions, because what is good depends on the
domain. For example, consider again the case of the McGill student IDs. Using something like the
first 4 digits of the student ID would be really bad, because all numbers start with 260, followed
by 2 digits that indicate the year when the student started. So, if we used this function, all students
would be mapped to just a few entries! On the other hand, using the last 5 digits is perhaps better,
because the last part of the ID is just a counter. So intuitively, the last 4 digits should give us a
more uniform spread of the students into buckets. In general, we can try to get a more uniform
spread by performing some operations on the digits of the number, e.g. adding them, computing a
polynomial etc.

Usually, no matter what processing we do, in the end we will map the result into the m buckets
of the table by using the modulo operator. Recall that p%B, or p mod B is the remainder of the
integer division of p to B. For example, 13%10 = 3, 10%6 = 4. So what is a good value for B?
Often people will use a prime B. Recall that a prime number is only divisible by 1 and itself. The
intuition behind using primes is that they will help “even out” the result, in the event that all our
work still leaves us with a skewed distribution.

For example, suppose that as a result of our previous operations, we were left with a lot of
numbers that are divisible by 5. If we use a table size which is a multiple of 5, all these keys will
be clustered together in the same buckets. For example, if we use a table of size 100, we will get
a lot of entries in buckets 0, 5, 10, 15, . . . 95, and very few entries in any other buckets. Even if
we use something like 125, there will still be a lot of collisions. For example, elements with keys

3

155, 255 and 355 will all be grouped in buckets with indices divisible by 5 (the indices are 30, 5
and 105 respectively). So we still get very large buckets for divisors of 5 and very small buckets
otherwise. What happens if we use a prime number, e.g. 101? In our example, 155 will be mapped
to bucket 54, 255 to bucket 53, 355 to bucket 52. So the distribution appears a lot more even, and
in particular buckets that are multiples of 5 are not overflowing anymore. Since we may not know
in advance which kind of flaw our distribution will have, a prime size B is a “vanilla” solution:
we will only be unlucky if somehow the distribution favors produces a lot of numbers that are
multiples of B. If we choose a table of non-prime size, p1 · p2 · . . . · pk, we will be unlucky with
distributions in which we see more numbers divisible by any of the pi factors.

To see why this is, suppose we have a key k and a table of size B divisible by p, i.e. B = p ∗n.
Suppose k is also divisible by p, i.e. k = p ∗m. Then we have:

k%B = k −B ∗ l, where l is some natural number
= p ∗m− p ∗ n ∗ l
= p ∗ (m− n ∗ l)

So k%B is also divisible by p, which means that k will fall in a bucket of index divisible by p. To
get an intuitive feel for this phenomenon, you can use the HashFn.java code from the web page.
E.g., try it out with hash table sizes 100, 101, 102, 103, 104, 105, and see what happens.

If the key is a string, we can map it to an integer by taking the sum of the ASCII codes of the
characters. However, this may also lead to collisions, as the distribution of letters in a language
is not uniform, so the ASCII code sums will give a skewed distribution. It is better to compute a
polynomial of a prime number (in this case, it could be a small number), where the ASCII codes
of the characters are coefficients. From then on, we can use a hashing function like for integers. In
general, any object is represented in memory as a string of bits, which of course can be interpreted
as an integer, and so it can be given as input to a hashing function.

It is worthwhile, when using a hash table, to adopt good hashing functions from the computer
science literature, based on knowledge of the application at hand.

4 Notes on Java implementation
In Java, hash tables are implemented through the HashMap class, which implements the Map
interface. Maps are mappings from keys to values (the same concept as dictionaries). In older
versions of Java, there used to be a Dictionary abstract class instead, but the use of an interface is
more convenient.

The HashMap class constructor lets you set (if you want) two parameters: the initial desired
capacity and a “load factor”. When the HashMap contains a number of objects equal to the capacity
times the load factor, it will automatically re-size to a larger capacity. This operation obviously
is expensive, but it ensures that the access operations are roughly O(1) (assuming a “good” hash
function).

The hashing is implemented using the hashCode() method that is associated with the Object
class. If you want to use the HashMap for your particular data, and you want it to work well, you
can re-define the hashCode() function to something that is appropriate to the data. If two objects
are equal according to the equals() method, they must have the same hash code.

4

