
Lecture 12: More on selection sort. Proofs by induction.

Doina Precup
With many thanks to Prakash Panagaden and Mathieu Blanchette

January 31, 2014

Last time we started discussing selection sort, our first sorting algorithm, and we looked at
evaluation its running time and proving its correctness using loop invariants. We now look at
a recursive version, and discuss proofs by induction, whichwill be one of our main tools for
analyzing both running time and correctness.

1 Selection Sort revisited

The algorithm can also be written in a recursive way as follows:

Algorithm selectionSort(a, n)
Input: An arraya of n elements
Output: The array will be sorted in place (i.e. after the algorithm, the elements ofa will be in
nondecreasing order
if n ≤ 1 return
int indmax←findMaxIndex(a,n)
swap(a,n, indmax)
selectionSort(a,n− 1)

This is an example oftail recursion: the recursive call is executed only once, on almost the
entire array. Tail recursion in general does not give any speed gains compared with using loops.
Indeed, if the compiler is smart, it will convert tail recursion into a loop instead (because running
a loop does not require using the execution stack, and hence is faster in practice). We will discuss
different types of recursion again later on. The algorithm has the same big-oh as the loop version
from last lecture, as the number of comparisons needed is thesame (comparisons occur to check
the base case, and inside findMaxIndex).

2 Mathematical induction

Let’s come back to the equality that we used as the basis for determining the complexity of selec-
tion sort. We obtained it based on a calculations - but can we prove more formally that it is correct?
To do this, we will use a proof technique calledproof by induction. This is a very important way

1



of proving both mathematical statements over sequences of integers, as well as statements about
the complexity and correctness of recursive algorithms.

The goal of mathematical induction is to prove that some statement, or propositionP (n) is true
for all integersn ≥ a for some constanta. For example, we may want to prove that:

n
∑

i=1

i =
n(n+ 1)

2

(this is a fact that we will use on several occasions). SoP (n) is the fact above, and we want to
prove that it is true for any integern ≤ 1.

One way to visualize what we want to do is to imagine that we wrote the statement ofP (n),
for everyn, on a piece of domino. Now we arrange these dominoes in a long line, so that we only
have access to the first domino in the line. Proving thatP (n) is true for alln is the same as trying
to topple all the dominoes. First, we need to make sure that wecan topple the first one. Then, we
need to make sure that any two dominoes are close enough, so that if thenth one falls, the(n+1)th
will fall as well. Intuitively, if we ensure these two facts,then we can topple the first domino and
all of them will go down.

Proofs by induction work exactly based on this intuition. Ifwe want to prove thatP (n) is true
for anyn ≥ a, we will do it in two steps:

1. Base case: Prove thatP (a) is true (i.e., we can topple the first domino)

2. Induction step: If P (n) is true, thenP (n+ 1) is also true (i.e, if thenth domino falls, then
n+ 1th will also fall) . We will callP (n) theinduction hypothesis.

If we can prove these two things, then, by the principle of induction,P (n) is true for alln ≥ a.
More generally, in the base case, we may show not onlyP (a), but several cases:P (a + 1),

P (a + 2), ... Then, in the induction step, we will show that ifP (n) holds for anya ≤ n ≤ b then
P (b+1) also holds. In other words, if all the dominoes up tob have fallen, thenb+1 will also fall.

As an example, suppose that we want to prove:

P (n) :
n
∑

i=1

i =
n(n+ 1)

2
, ∀n ≥ 1

The proof goes in two steps:

1. Base case: supposen = 1. Then
∑1

i=1 i = 1 = 1·2
2

. So the base case is correct

2. Induction step: suppose thatP (n) is true, i.e.
∑

n

i=1 i =
n(n+1)

2
(this is the induction hypoth-

esis). Now show thatP (n + 1) is also true, i.e.,
∑

n+1
i=1 i = (n+1)(n+2)

2
. To do this, let us

proceed by breaking up the sum into two parts:

n+1
∑

i=1

i =

(

n
∑

i=1

i

)

+ (n + 1)

=
n(n + 1)

2
+ (n + 1) (by using the induction hypothesis)

=
(n+ 1)(n+ 2)

2

2



In most proofs by induction, in the induction step we will tryto do something very similar to the
approach here; we will try to manipulateP (n + 1) in such a way as to highlightP (n) inside it.
This will allow us to use the induction hypothesis.

Here are now some more examples of induction:

1. Prove that2n < n!, ∀n ≥ 4.
Proof:
Base case: Forn = 4, we have24 = 16 and4! = 1 · 2 · 3 · 4 = 24
Induction step: Suppose the2n = n!. Is it true that2n+1 < (n + 1)!? We have:

2n < n! (by the induction hypothesis)

2 < (n + 1) (becausen ≥ 4)

By multiplying the two together, we get the result. This concludes the proof.

2. Prove that13 + 23 + . . . n3 = (1 + 2 + . . .+ n)2

Proof:
Base case: n = 1 - obvious
Induction step:

n+1
∑

i=1

i3 =
n
∑

i=1

i3 + (n + 1)3

= (1 + 2 + . . .+ n)2 + (n + 1)2(n+ 1), using the induction hypothesis

= (1 + 2 + . . . n)2 + (n+ 1)2 + 2
n(n + 1)

2
(n + 1)

= (1 + 2 + . . . n)2 + (n+ 1)2 + 2(1 + 2 + . . .+ n)(n+ 1), using identity showed above

= (1 + 2 + . . . (n+ 1))2

3 Correctness of recursive selection sort

Note that induction proofs have a very similar flavour to recursive algorithms. There too, we have
a base case, and then the recursive call essentially makes use of “previous cases”. for this reason,
induction will be the main technique to prove correctness and time complexity of recursive
algorithms.

Induction proofs for recursive algorithm will generally resemble very closely the algorithm
itself. The base case(s) of the proof will correspond to the base case(s) of the algorithm. The
induction step will typically assume that the all recursivecalls execute correctly, and then prove
that the algorithm itself is correct. In other words, you have to put your faith in the recursive
call.

For the recursive selection sort, the property we want to prove is that for an array of any input
sizen, at the end of the algorithm,a[j] ≤ a[i], ∀j ≤ i, i < n.
Base case: If n = 1, the statement is trivially true.
Induction step: We will look at the statements that hold true after each line of the algorithm.

3



int indmax←findMaxIndex(a,n)
After this step, due to the fact that the findMaxIndex call works correctly (as we proved last time),
we have:a[indmax] ≥ a[i], ∀i < n

swap(a,n, indmax)
After this step, due to the effect of the swap, we havea[n] ≥ a[i], ∀i < n

selectionSort(a,n− 1)
By the induction hypothesis, we assume the recursive call worked. Hence, at this point,∀j ≤ i, i <

n− 1, a[j] ≤ a[i].

Putting the last two statements together gives the desired conclusion.
Note that in this style of analysis, we established repeatedly whatmust be true after a partic-

ular piece of code; this is called apostcondition. similarly, a logical statement that must be true
before executing a certain piece of code is called aprecondition. The proof of correctness chains
these statements together. Note also that in general, the proof by induction technique is somewhat
easier to construct, as one does not need to guess at a loop invariant.

4


