Lecture 11: Sorting. Proofs of correctness and lower
bounds. Selection sort.

Doina Precup
With many thanks to Prakash Panagaden and Mathieu Blaechett

January 29, 2014

1 Sorting

Suppose that you are given an array of elements and you want tbe elements in increasing or
decreasing order. This can be useful for many differentoresdut here | will note just two. First,
as we saw, we can search much faster in a sorted array tharumsarted array (by doing binary
search, instead of sequential search). Second, when wenprgta to customers, it can be very
useful to show it in order (e.g. the names of students in acthe bank transactions ordered by
the date etc). Sorting is one of the most studied problemsnmpeiter science, and many different
algorithms have been developed. Today we will discuss atrdorting algorithm: selection sort.

2 Selection sort

The idea of selection sort is very simple: we can repeategllgcs the maximum element in an
array, move it in the last position, then select the maximuitihé remaining portion, move it into
the second to last position etc., until no elements are edt. examples, supposed we have the
following array:

1423

We find the max element (4) and its index, and we swap it in teepasition. This leads to
the array:

1324

Now we will look at the first 3 elements in the array only, fine thnax, and swap it in the last
position in this array portion:

1234

Further iterations of the algorithm will look at the first 2emients, then the first element, but
no further modifications are necessary.

In order to write this algorithm, we will need a “helper” furan (or method, in Java), which
finds the index of the maximum element within the fitstlements of an array and returns it. We
now turn our attention to this algorithm.

3 Findingthe maximum in an array revisited

Consider the simple algorithm of finding the index to the maxin element in an array of numbers:

Algorithm findMaxIndex,n)
Input: An arraya of n elements, which can be compared to each other
Output: The index of the largest element in the array
int max < al0]
int indmax < 0
fori<1ton—1
if (a[é] > maz) then
max < ali
mdmazx <@
endif
return indmax

How many steps does this take? Let us count the comparisansatke place inside the loop.
The loop gets executed exactly— 1 times, regardless of how the array looks. So the best, worst
and average number of comparisons is 1. Indeed, this: — 1 is alower bound on the number
of operations needed. In other words, without doing at l#astmany comparisons, you cannot
generate a proof that the claimed maximum is indeed the marimindeed, suppose that we
could come up with an algorithm that does only- 2 comparisons. In this case, there must be
some element in the array that never gets compared with tle Hhgou imagine anadver sary
arranging the input data, he or she can hide the true max ielémeent that never gets compared
with the candidate max. So the solution you return will beng.o

In generallower bounds on the running time of an algorithm tell you how many openagio
are needed, in the worst cabg,any algorithm solving this problem. If you prove a lower bound
for a problem, then you know that no algorithm, no matter howat or fancy, can beat this, in the
worst case. The typical way to prove lower bounds is toather sarial arguments, like the one
we saw above. This assumes that an adversary has knowleddmabyou are doing, and tries to
do what's worst for you. Providing these kinds of proofs ieafquite tricky.

How do we prove that this algorithm is correct? We need to tiwg after every execution of
the loop, max will contain the largest element in the parbefarray seen so far, and indmax will
contain the corresponding index. We can write this as fatow

afterq iterationsvj < i, a[indmax] > a[j]
We will say that this condition is &oop invariant. Since it holds after every execution of the
loop, it will also hold at the end of the algorithm, so at thel efindmax] > afi],Vi < n. In

2

general, proving the correctness of iterative algorithathgdrithms involving loops) requires us to
use loop invariants. These will be different depending @nalgorithm. So there is no “blueprint”
for how these proof should go. We will see next time that itasially quite a bit easier to prove
the correctness of recursive algorithms, using a techraglied proof by induction.

4 Selection Sort pseudocode and running time

The pseudocode of the algorithm is as follows:

Algorithm selectionSort{, n)
Input: An arraya of n elements
Output: The array will be sorted in place (i.e. after the algorithnistires, the elements afwill
be in non-decreasing order)
inti<n-—1
whilei > 0 do
int indmaz +findMaxIndex,:)
swap(, i, indmax)
14—1—1
return

Here, findMaxIndex is the algorithm fro the previous sectidhe swap algorithm simple swaps
the values of the elements whose indices are sent as argament

Algorithm swapg,i,;)

Input: Array a and indices and;

Output: The content of elementdi] anda[;] will be swapped
tmp < ali]

ali] alj]

alj] < tmp

return

Now let us prove that the selection sort algorithm works ectty. This means that at the end
of the execution, we need to hawg| < a[i],Vj < i. To prove that the algorithm works correctly,
we need to find &op invariant which helps us show the condition above. Let the loop invdria
be the following:

after iteration with indek a[i| > a[j],Vj <

To show this, recall that findMaxIndex works correctly, asstewed before. So it will find
the largest element among indice i. Then the swap will put this value at positionSince we
are working backwards, after the first iteration, we hajg > «a[j],Vj < n. After the second
iteration,a[n — 1] > a[j],Vj < n — 1 etc. Moreover, after the iteration with indéxelementu[i|
is not visited anymore. This proves the loop invariant. Nb&g by putting together the statements
that are true after eachthe loop invariant implies the ordering condition that wanivto show.

To find the complexity of selection sort, consider the nundderomparisons that will have to

be executed. We know that the algorithm for finding the maxelements takes—1 comparisons.
So here we will havén — 1) comparisons in the first call to findMaxIndex, ther 2 in the second
call etc. The comparison in the while loop is executddnes. So the total number of comparisons
will be: .
LN, n+1)n
n+(n—1)+(n—2)+...+12212%
i=1

To see this equality, you can simply group the first and lash tsecond and second-to-last etc.
Each such sum is + 1, and there should be/2 such terms. So (based on the calculation above)
the algorithm isD(n?). We will use induction to prove this formally next lecture.

