
Lecture 3: More on list intersection

Doina Precup
With many thanks to Prakash Panagaden and Mathieu Blanchette

January 10, 2014

1 Example: Computing the intersection of two lists of students

In lecture 2, we started discussing the problem of computingthe number of common elements in
two arrays. We described an algorithm which loops over the two arrays and computes this in time
O(mn), wherem andn are the sizes of the two arrays. What if the array is sorted? Can we do any
better?

2 Binary Search

The answer is yes, by using an algorithm calledbinary search. The basic idea is to look at the
middle of the array. If we found the name (or student id) we searched for, we are done. Otherwise,
we look to the right or left part of the array, depending on whether we have a name that occurs
before or after the one in the middle, in terms of alphabetic order (or whatever ordering we have).
The pseudocode for binary search in general is as follows:

Algorithm: binarySearch (a,n,val)
Inputs: A sorted arraya of n elements, and a valueval that we want to find
Output: True if a containsval, false otherwise
int l, r; // these are indices that delimit the part of the array wherewe are searching
l ← 0
r ← n− 1
while (r ≥ l) do

int mid← ⌊ l+r

2
⌋ // this the index of the middle element

if (a[mid] = val) return true
else if (a[mid] < val) then l ← mid+ 1
else r ← mid − 1

return false

Now given this routine, the list intersection algorithm canbe written as follows:
Algorithm: listIntersection(a,n, b,m)
Input: An arraya of n strings and an arrayb of m strings. The elements ofa are assumed to be

1



distinct. The same is true forb.
Output: The number of elements present in botha andb
int intersect← 0
sort(b,m)
for i← 1 to n do

if binarySearch(b,m,a[i])
intersect← intersect + 1

return intersect

How much time will this algorithm take? Its running time willbe the same as the running time of
the sorting algorithm plus the running time of the binary search. We will see later that sorting takes
roughlym log2m, wherem is the size of the array we sort. But how long does binary search take?

To reason about this, suppose that we are searching through an array of7 elements. How many
comparisons will we make, in the worst case? We will look at the middle of the array (element of
index 3, assuming that we are indexing from 0). Then we will look at a chunk of size 3 elements,
and after that at a single element. So in the end, we will make 3comparisons in the worst case.
This is roughlylog2 7. How can we reason about this more generally? Think of how thesize of the
part of the array that is of interest to us decreases over time. Initially we havem elements, then
m/2, (m/2)/2 = m/22 etc. In the worst case, the element is not there, and we will have to go all
the way to a single element, i.e.n/2log2 m. We do one comparison for each size of the array, so the
total number will beO(log2m). Hence, binary search takesO(log2m).

Now going back to our list intersection algorithm, binary search is called in a loop which
executesn times, so this will takeO(n log2m). So it is best actually to sort one of the arrays,
then run this algorithm. Since listIntersection has to sortthen execute the loop, its total time is
O((n+m) log2m). Is this kind of improvement important compared to the previous solution? To
see this, consider how the running time grows with the sizes of the two arrays:

(m,n) Naive solution Binary search
(8,8) 8*8=64 16*log2(8)=48

(16,16) 16*16=256 32*log2(16) =128
(32,32) 32*32=1024 64*log2(32)=320
(64,64) 64*64=4096 128*log2(64)=1024

... ... ...
(1024,1024) 1 048 576 20 480 51 times faster!
(106, 106) 1012 4 ∗ 107 25000 times faster!

3 More on binary search. Recursion

The version of binary search that we wrote above isiterative: we have a loop and indices which
tell us in which part of the array too look. But perhaps a more natural way to think about the
problem is the following: we look at the middle element, and if it is not the value we want, we
will now search either to the left of it, or to the right of it,using the same procedure. This is
essentially what we are doing with our indices. But we can write this in a more direct way as well:

2



Algorithm: binarySearch (a,l,r,val)
Inputs: A sorted arraya, indicesl andr which delimit the part of interest, and a valueval that we
want to find
Output: True if the portion ofa betweenl andr containsval, false otherwise
if (l > r) then return false
int mid← ⌊ l+r

2
⌋ // this the index of the middle element

if (a[mid] = val) then return true
else if (a[mid] < val) then return binarySearch(a, mid + 1, r, val)
else return binarySearch(a, l, mid− 1, val)

Note that we will call this algorithm on and arraya of sizen as:
binarySearch(a,0,m− 1,val)

Also note that theelse is optional, we could remove them and the flow of the algorithmwould
not change. Finally, notice that the structure of the algorithm is somewhat different, we start by
stating the “exit” conditions (the easy cases in which the algorithm terminates) then proceed with
the others.

Note that this binary search algorithm actually calls itself! An algorithm which calls itself, on
a different set of attributes, is calledrecursive. In this case, the execution of both the iterative
and the recursive versions will proceed exactly the same. However, sometimes it is more natural to
think of an algorithm recursively. As we will see later, it may also be easier to prove the correctness
of a recursive algorithm, and to analyze its running time. Wewill see lots of examples of recursive
algorithms later in this class.

3


