
Queues, deques, and

doubly-linked lists

Lecture 20

Queues

Queue: First-in First-out data structure (FIFO)

Applications: Any first-come first-serve service

Front of

queue

Rear of

queue

Queues operations

• void enqueue (Object o)

– Add o to the rear of the queue

• Object dequeue()

– Returns object at the front of the queue and removes it
from the queue. Exception thrown if queue is empty.

• Object front()

– Returns object at the front of the queue but doesn't
remove it from the queue. Exception if queue empty.

• int size()

– Returns the number of objects in the queue

• boolean isEmpty()

– returns True is queue is empty

Example

Queue q = new Queue()

q.enqueue("Roses")

q.enqueue("are")

q.enqueue("red")

print q.size()

print q.front()

print q.dequeue()

dequeue()

print q.queue()

print q.isEmpty()

Queues with linked-lists

"Rose" | "are" | "blue" |

Front = Head Rear = Tail

Queue operation Linked-list operation Running time

enqueue(Object o) addLast(o)

dequeue() removeFirst()

front() getFirst()

empty() empty()

size() size()

What would happen if we used instead the convention:

"Front of queue = tail, Rear of queue = head" ?

 O()

 O()

Double-ended queues

• A double-ended queue (a.k.a. "deque") allows
insertions and removal from the front and back

• Deque operations with linked-lists

– Object getFirst()

– Object getLast()

– addFirst(Object o)

– addLast(Object o)

– boolean isEmpty()

– Object removeFirst()

– Object removeLast()

– int size()

O()

O()

Deques and doubly-linked-lists

• Problem: removeLast takes time O(n) with linked lists

• To do it faster, each node has to have a reference
to the previous node in the list

• class node {

 node prev, next;

 Object value;

 node(Object val, node p, node n);

 node getPrev(); void SetPrev(node n);

 node getNext(); void SetNext(node n);

 Object getValue(); void setValue(Object o);

}

 | "Roses" | | "Roses" | | "Roses" |

prev value next prev value next prev value next

head tail

Operations on doubly-linked-lists
Object removeLast() throws Exception {

if (tail==null) throw new Exception("Empty deque");

Object ret = tail.getValue();

tail = tail.getPrev();

if (tail==null) head=null;

else tail.setNext(null);

return ret;

}

void addFirst(Object o) {

node n = new node(o, null, head);

if (head != null) head.setPrev(n);

else tail = n;

head = n;

}

Exercise: Write all other deque methods using a doubly
linked-list

Implementing deques with arrays

• Suppose we know in advance the deque will never
contain more than N elements.

• We can use an array to store the elements in the deque

• Keep track of indices for head and tail

• addLast: indexTail = indexTail + 1

• addFirst: indexHead = indexHead - 1

• removeLast: indexTail = indexTail - 1

• removeFirst: indexHead = indexHead + 1

 | | | | | | | | | | |

0 1 2 ... N-1

Rotating arrays

• Idea: To avoid outOfBounds exceptions,

 have indices “wrap around”:

(N-1) + 1 = 0

0 - 1 = N-1

• Equivalent to arithmetic modulo N

a mod N = rest of integer division a/N

3 mod 7 = 3

7 mod 7 =

10 mod 7 =

• With a rotating array, the deque will never go out of
bounds, but may overwrite itself if we try to put more
than N elements into it.

• How can we check if the deque is full (has N elements?)

0
1

...

2

N-1
N-2

