
COMP 250: Introduction to Computer Science
More sample problems

1. Graph coloring
Determining if an undirected graph can be colored with only three colors is an NP-complete
problem. However, determining if it can be colored with only two colors is much easier.
Write the pseudocode of an algorithm that determines if the vertices of a given connected
undirected graph can be colored with only two colors (named 0 and 1) so that no two adjacent
vertices have the same color. Assume the graph has n vertices numbered 0,1, ... n− 1. Use
the following graph ADT methods:

• getNeighbors(int i) returns the set of neighbors of vertex i. It is fine for you to write
something like: for each vertex v in getNeighbors(17) do ...

• boolean getVisited(int i) returns TRUE if and only if vertex i has been marked as vis-
ited.

• setVisited(int i, boolean b) sets the visited status of vertex i to b.

• getColor(int i) returns the color of vertex i, either 0 or 1. If the color of vertex i has not
been set previously, getColor(i) is undefined.

• setColor(int i, color c) sets the color of vertex i to c.

Solution: The idea is to start at some node (does not matter which one, since the graph is
undirected and has only one connected component). Since it is easy, we will start with node
0. We will color the node in one color, then we color its neighbors the opposite color, and
repeat. This is a breadth-first search. If we encounter a node that has already been colored
in the wrong color, the graph cannot be colored as required. If we manage to color all nodes,
we return true. The pseudocode is as follows:

Algorithm: TwoColor (Graph g, int n)
Input: A graph g with n vertices
Output: Return true if g can be colored in two colors as required, false otherwise
int i← 0;
we will use this to index the nodes in the graph
while i < n do

g.setVisited(i,false);
i← i+ 1

boolean color = true;//current color
Queue q=new Queue;// this will hold the nodes for the breadth-first search expansion
g.setColor(0,color);
q.enqueue(0);
while (!q.empty()) do

i← q.dequeue();
while (!g.getVisited(i)) do

g.setVisited(i,true);
color← !g.getColor(i);// we flip the color

1



for each j ∈ g.getNeighbors(i) do
if (g.getVisited(j) and !(g.getColor(j)=color)) then return false;
if (!g.getVisited(j)) then

g.setColor(j,color);
q.enqueue(j);

return true;

2. Binary trees
Suppose that you have a binary tree such that any internal node has exactly two children. An
example of such a tree is depicted in Figure 1.

Show by induction that a tree of this type with n leaves has exactly 2n− 2 edges.

Solution:
Base case: If the tree has only 1 node, this is 1 leaf and 2*1-2 edges.

Induction step: As always with binary trees, we will cut out the root and use the induction
hypothesis on the tow subtrees. When we cut out the root, we get two subtrees, with l and
n − l leaves respectively. Assuming the inducton hypothesis is true, they have 2l − 2 and
2(n− l)− 2 edged. The whole tree has:

(2l − 2) + (2(n− l)− 2) + 2 = 2n− 2 edges

which proves the statement.

3. Binary search trees and heaps

(a) For the binary tree in the figure, show the result of inserting 7 into the tree.

5

41

83

6

Solution:

2



5

41

83

6

7

(b) For the same binary tree (without the previous insertion), show the result of removing
3 from the tree
Solution:

5

1

84

6

(c) For the heap in the figure, show the result of inserting 5 in the heap

1

103

42

7

Solution:
1

103

42

7 5

(d) For the same heap (without the previous insertion) show the result of removing the
minimum element.
Solution:

2

107

43

4. General trees

3



The fringe of a tree is the sequence of leaves, listed from left to right. Write an algorithm
for a binary tree class that prints out the fringe of the tree. What is the O() of your method?

Solution: We give here just pseudocode for the fringe method.

Algorithm Fringe(BinaryTreeNode root)
Input: The root of a binary tree
Output: Prints the fringe of the tree
if root.left=null and root.right=null then

print root.content;
return;

if root.left6=null then Frindge(root.left);
if root.right6=null then Frindge(root.right);
For the running time, we have the following recurrence:

T (n) = c+ T (k) + T (n− k − 1)

where c is a constant and k is the number of nodes on the left. Note that this means O(n)
where n is the number of nodes in the tree (because each node gets touched once).

5. Proofs by induction for trees

(a) Suppose you have a full binary tree of depth k. Prove by induction that there are 2k

paths from root to leaves
Solution:
Base case: For 1 depth, we have a root with 2 leaves, so we have 2 paths from the root
to leaves.
Induction step: A binary tree of depth k consists of a root with 2 children, which are
roots of sub-trees of height/depth k − 1. Hence, the number of paths from the root to
the leaves is:

P (k) = 2P (k − 1) = 2 ∗ 2k−1 = 2k

where in the second equality we used the induction hypothesis.

(b) Suppose you have a binary tree in which each node has either 0 or 2 successors. Show
by induction that the total number of nodes has to be odd.
Solution: Base case: For a tree with 1 node, this is trivially true.
Induction step: Suppose that any tree up to depth k has an odd number of nodes. Hence,
its number of nodes can be written as 2m+1 for some natural number m. Now consider
a tree of depth k. Its root will have two subtrees. The number of nodes, using the tree
structure and the induction hypothesis, is:

1 + (2l + 1) + (2r + 1) = 1 + 2(l + r + 1)

which is odd. This concludes the proof.

6. Counting elements with particular features
Consider the problem of counting how many times integers divisible by a given number k
occur in an array a.

4



(a) What is the lower bound on the running time for any algorithm that attempts to solve
this problem correctly?
Solution: The argument is similar to the one used in lecture 9 for the max algorithm.
The lower bound on the algorithm is O(n) where n is the length of the array. Suppose
you do not touch some element of index i. An enemy can hide a number divisible by k
in a[i], so your algorithm will be incorrect.

(b) Give a recursive algorithm (in pseudocode) for solving this problem. Make your algo-
rithm as efficient as possible.
Solution: We will give an algorithm very similar to max, so it will be a tail recursion
Algorithm: CountDivK (a, n, k)
Input: An array a of natural number of length n and a natural number k
Output: The number of elements of a that are divisible by k
if (n = 0) then return 0
if (a[n] mod k = 0) return 1+CountDivK(a, n− 1, k)
return CountDivK(a, n− 1, k)

(c) Prove by induction that your algorithm is correct
Solution: Again, we will follow the pattern from the max recursive algorithm. For
the base case, n = 0 and the answer returned by the algorithm is trivially correct. For
the induction step, we assume that the recursive call worked and returned correctly the
number of elements divisible by k in the array up to index n− 1. Our algorithm in this
case adds 1 if a[n] is divisible by k, otherwise it adds a 0. So the answer will be correct,
and the proof is concluded.

(d) Write a recurrence for the running time of your algorithm, and use it to determine O()
for your algorithm.
Solution: The recursive call happens regardless of the value of a[n] and the rest of the
algorithm contains constant-time steps, so we have:

T (n) = c+ T (n− 1)

where c is a constant. As shown in lecture 9, this yields that T (n) ∈ O(n).

7. Proofs by induction

(a) Prove by induction that n3 + (n+ 1)3 + (n+ 2)3 is divisible by 3 for all n.
Solution:
Base case: n = 0→ 0 + 13 + 23 = 1 + 8 = 9 which is divisible by 3
Induction step: Suppose the statement is true for n, so we have:

n3 + (n+ 1)3 + (n+ 2)3 = 3k

for some natural number k. Now we examine the sum for n+ 1:

(n+ 1)3 + (n+ 2)3 + (n+ 3)3 = n3 + (n+ 1)3 + (n+ 2)3 − n3 + (n+ 3)(n2 + 6n+ 9)

= 3k − n3 + n3 + 3(2n2 + 3) + 3(n2 + 6n+ 9) = 3k′

Hence, we proved that the result holds for n = 1 which concludes the proof by induc-
tion.

5



(b) The Fibonacci numbers are a famous sequence defined as follows:

f1 = 1, f2 = 1

fn = fn−1 + fn−2,∀n ≥ 3

Prove by induction that:
n∑

i=1

f 2
i = fnfn+1

Solution:
Base case: For n = 1, we have:

1∑
i=1

fi = f1 = 1 = 1 ∗ 1 = f1f2

Induction step: Suppose the result hold for an arbitrary n, we now show it holds for
n+ 1:

n+1∑
i=1

f 2
i =

n∑
i=1

f 2
i + f 2

n+1

= fnfn+1 + f 2
n+1 (using the induction hypothesis)

= fn+1(fn + fn+1)

= fn+1fn+1 (using the definition of Fibonacci numbers)

This concludes the proof.

6


